Pandas version checks
-
[X] I have checked that this issue has not already been reported.
-
[ ] I have confirmed this bug exists on the latest version of pandas.
-
[X] I have confirmed this bug exists on the main branch of pandas.
Reproducible Example
import pandas as pd
from pandas import *
import sys
import datetime as dt
import pyarrow as pa
import io
data = [dt.datetime(2020, 1, 1, 1, 1, 1, 1), dt.datetime(1999, 1, 1)]
ser = pd.Series(data, dtype='timestamp[ns][pyarrow]')
print(ser)
print()
ser = pd.Series(data, dtype='datetime64[ns]')
print(ser)
Issue Description
The above outputs:
0 2020-01-01 01:01:01.000001
1 1999-01-01 00:00:00
dtype: timestamp[ns][pyarrow]
0 2020-01-01 01:01:01.000001
1 1999-01-01 00:00:00.000000
dtype: datetime64[ns]
Note how, in the pyarrow case, the date formats are different.
This causes issues when parsing with to_datetime
and specifying format=
:
In [1]: data = [dt.datetime(2020, 1, 1, 1, 1, 1, 1), dt.datetime(1999, 1, 1)]
In [2]: ser = pd.Series(data, dtype='timestamp[ns][pyarrow]')
...: string_data = ser.to_csv(index=False, header=None).splitlines()
...: pd.to_datetime(string_data, format='%Y-%m-%d %H:%M:%S.%f')
...:
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
Cell In [2], line 3
1 ser = pd.Series(data, dtype='timestamp[ns][pyarrow]')
2 string_data = ser.to_csv(index=False, header=None).splitlines()
----> 3 pd.to_datetime(string_data, format='%Y-%m-%d %H:%M:%S.%f')
File ~/pandas-dev/pandas/core/tools/datetimes.py:1110, in to_datetime(arg, errors, dayfirst, yearfirst, utc, format, exact, unit, infer_datetime_format, origin, cache)
1108 result = _convert_and_box_cache(argc, cache_array)
1109 else:
-> 1110 result = convert_listlike(argc, format)
1111 else:
1112 result = convert_listlike(np.array([arg]), format)[0]
File ~/pandas-dev/pandas/core/tools/datetimes.py:436, in _convert_listlike_datetimes(arg, format, name, tz, unit, errors, infer_datetime_format, dayfirst, yearfirst, exact)
433 return res
435 utc = tz == "utc"
--> 436 result, tz_parsed = objects_to_datetime64ns(
437 arg,
438 dayfirst=dayfirst,
439 yearfirst=yearfirst,
440 utc=utc,
441 errors=errors,
442 require_iso8601=require_iso8601,
443 allow_object=True,
444 format=format,
445 exact=exact,
446 )
448 if tz_parsed is not None:
449 # We can take a shortcut since the datetime64 numpy array
450 # is in UTC
451 dta = DatetimeArray(result, dtype=tz_to_dtype(tz_parsed))
File ~/pandas-dev/pandas/core/arrays/datetimes.py:2144, in objects_to_datetime64ns(data, dayfirst, yearfirst, utc, errors, require_iso8601, allow_object, format, exact)
2142 order: Literal["F", "C"] = "F" if flags.f_contiguous else "C"
2143 try:
-> 2144 result, tz_parsed = tslib.array_to_datetime(
2145 data.ravel("K"),
2146 errors=errors,
2147 utc=utc,
2148 dayfirst=dayfirst,
2149 yearfirst=yearfirst,
2150 require_iso8601=require_iso8601,
2151 format=format,
2152 exact=exact,
2153 )
2154 result = result.reshape(data.shape, order=order)
2155 except OverflowError as err:
2156 # Exception is raised when a part of date is greater than 32 bit signed int
File ~/pandas-dev/pandas/_libs/tslib.pyx:442, in pandas._libs.tslib.array_to_datetime()
440 @cython.wraparound(False)
441 @cython.boundscheck(False)
--> 442 cpdef array_to_datetime(
443 ndarray[object] values,
444 str errors='raise',
File ~/pandas-dev/pandas/_libs/tslib.pyx:622, in pandas._libs.tslib.array_to_datetime()
620 continue
621 elif is_raise:
--> 622 raise ValueError(
623 f"time data \"{val}\" at position {i} doesn't "
624 f"match format \"{format}\""
ValueError: time data "1999-01-01 00:00:00" at position 1 doesn't match format "%Y-%m-%d %H:%M:%S.%f"
Expected Behavior
If it printed
0 2020-01-01 01:01:01.000001
1 1999-01-01 00:00:00.000000
dtype: timestamp[ns][pyarrow]
, just like it does for datetime64[ns]
, then the issue would be solve
Installed Versions
Comment From: MarcoGorelli
This only became apparent when the historic issue of to_datetime
not respecting exact
for ISO8601 formats was solved https://github.com/pandas-dev/pandas/pull/49333
Comment From: MarcoGorelli
Much simpler reproducer of the underlying issue:
In [1]: str(Timestamp(2020, 1, 1, 1, 1, 1, 1))
Out[1]: '2020-01-01 01:01:01.000001'
In [2]: str(Timestamp(2020, 1, 1, 1))
Out[2]: '2020-01-01 01:00:00'
Same thing happens in the standard library:
In [5]: str(dt.datetime(2000, 1, 1, 1, 1, 1))
Out[5]: '2000-01-01 01:01:01'
In [6]: str(dt.datetime(2000, 1, 1, 1, 1, 1, 123))
Out[6]: '2000-01-01 01:01:01.000123'
Could it be that
https://github.com/pandas-dev/pandas/blob/1c51e6004c09e6ccbbb8841dcb327ac0b5c9c80d/pandas/io/formats/format.py#L1406-L1408
should always print with %Y-%m-%d %H:%M:%S.%f
?
Maybe this only needs doing when saving to csv?
Will look into this more
Comment From: MarcoGorelli
Looks like date_format
in to_csv
doesn't work with the arrow type either:
In [1]: data = [dt.datetime(2020, 1, 1, 1, 1, 1, 1), dt.datetime(1999, 1, 1)]
In [2]: ser1 = pd.Series(data, dtype='timestamp[ns][pyarrow]')
...: ser2 = pd.Series(data, dtype='datetime64[ns]')
...:
In [3]: ser1.to_csv(date_format='%d-%m-%Y')
Out[3]: ',0\n0,2020-01-01 01:01:01.000001\n1,1999-01-01 00:00:00\n'
In [4]: ser2.to_csv(date_format='%d-%m-%Y')
Out[4]: ',0\n0,01-01-2020\n1,01-01-1999\n'
Comment From: MarcoGorelli
I think this might be the issue
https://github.com/pandas-dev/pandas/blob/2517199dc9d6174d967683eeb6ad7fe68a76df19/pandas/core/construction.py#L467
here arr.dtype.kind
is 'M'
, not sure why it's excluded.
Would
- if isinstance(arr, np.ndarray):
+ if isinstance(arr, np.ndarray) or is_extension_array_dtype(arr.dtype):
work? Will try
Comment From: mroeschke
ensure_wrapped_if_datetimelike
is called in a lot of places, so I'm not sure if it will always be valid to convert an ArrowExtensionArray
(with a datelike type) to a DatetimeArray/TimedeltaArray
cc @jbrockmendel
Comment From: jbrockmendel
haven't looked closely at the rest of the thread, but ensure_wrapped_if_datetimelike should only wrap np.ndarrays
Comment From: MarcoGorelli
ok thanks, I'll see where else this could be handled