Pandas version checks

  • [X] I have checked that this issue has not already been reported.

  • [X] I have confirmed this bug exists on the latest version of pandas.

  • [ ] I have confirmed this bug exists on the main branch of pandas.

Reproducible Example

import pandas as pd
import numpy as np

x1 = pd.Series([1, 2, None, 4])
x2 = pd.Series([1, 2, np.nan, 4])
x3 = pd.Series([1, 2, pd.NA, 4])

print(x1.to_numpy('int32', na_value=0))
# [1 2 0 4]

print(x2.to_numpy('int32', na_value=0))
# [1 2 0 4]

print(x3.to_numpy('int32', na_value=0))
# Traceback (most recent call last):
#   File "<input>", line 14, in <module>
#     print(x3.to_numpy('int32', na_value=0))
#   File "C:\src\venv\w310\lib\site-packages\pandas\core\base.py", line 535, in to_numpy
#     result = np.asarray(self._values, dtype=dtype)
# TypeError: int() argument must be a string, a bytes-like object or a real number, not 'NAType'

print(x3.to_numpy('float64', na_value=0))
# Traceback (most recent call last):
#   File "<input>", line 22, in <module>
#     print(x3.to_numpy('float64', na_value=0))
#   File "C:\src\venv\w310\lib\site-packages\pandas\core\base.py", line 535, in to_numpy
#     result = np.asarray(self._values, dtype=dtype)
# TypeError: float() argument must be a string or a real number, not 'NAType'

Issue Description

It appears that a Series that has a missing value that was created using either None or np.nan can be replaced by using Series.to_numpy(dtype=, na_value=), but one created with pd.NA fails with a raised exception (both arguments must be specified to trigger the behavior).

Expected Behavior

It is expected that since all three values (None, np.nan, and pd.NA) all represent missing values, that all three should behave the same. For the above reproducible example, the print statements should all report [1 2 0 4] (or [1. 2. 0. 4.] for the fourth 'float64' case).

Installed Versions

INSTALLED VERSIONS ------------------ commit : 87cfe4e38bafe7300a6003a1d18bd80f3f77c763 python : 3.10.6.final.0 python-bits : 64 OS : Windows OS-release : 10 Version : 10.0.19043 machine : AMD64 processor : Intel64 Family 6 Model 158 Stepping 13, GenuineIntel byteorder : little LC_ALL : None LANG : None LOCALE : English_United States.1252 pandas : 1.5.0 numpy : 1.23.3 pytz : 2022.2.1 dateutil : 2.8.2 setuptools : 65.3.0 pip : 22.2.2 Cython : 0.29.32 pytest : None hypothesis : None sphinx : None blosc : None feather : None xlsxwriter : None lxml.etree : 4.9.1 html5lib : None pymysql : None psycopg2 : None jinja2 : None IPython : None pandas_datareader: None bs4 : None bottleneck : None brotli : None fastparquet : None fsspec : None gcsfs : None matplotlib : 3.6.0 numba : None numexpr : None odfpy : None openpyxl : None pandas_gbq : None pyarrow : None pyreadstat : None pyxlsb : None s3fs : None scipy : None snappy : None sqlalchemy : None tables : None tabulate : None xarray : None xlrd : None xlwt : None zstandard : None tzdata : NoneReplace this line with the output of pd.show_versions()

Comment From: abatomunkuev

Is it because pd.NA is experimental ? see Experimental new features

The exception raises in line 535. Is it a problem with numpy? https://github.com/pandas-dev/pandas/blob/87cfe4e38bafe7300a6003a1d18bd80f3f77c763/pandas/core/base.py#L535

Comment From: phofl

Could you post this in #48891?

Comment From: MarcoGorelli

Not sure this is the same as https://github.com/pandas-dev/pandas/issues/48891, I think this can already be considered a bug

The following should work:

In [5]: pd.Series([1, 2, pd.NA, 4]).to_numpy('int64', na_value=0)
---------------------------------------------------------------------------
TypeError                                 Traceback (most recent call last)
Cell In [5], line 1
----> 1 pd.Series([1, 2, pd.NA, 4]).to_numpy('int64', na_value=0)

File ~/pandas-dev/pandas/core/base.py:540, in IndexOpsMixin.to_numpy(self, dtype, copy, na_value, **kwargs)
    535     bad_keys = list(kwargs.keys())[0]
    536     raise TypeError(
    537         f"to_numpy() got an unexpected keyword argument '{bad_keys}'"
    538     )
--> 540 result = np.asarray(self._values, dtype=dtype)
    541 # TODO(GH-24345): Avoid potential double copy
    542 if copy or na_value is not lib.no_default:

TypeError: int() argument must be a string, a bytes-like object or a number, not 'NAType'

I think this is more related to https://github.com/pandas-dev/pandas/issues/48864

Comment From: MarcoGorelli

This works if you start with a nullable type:

In [1]: x3 = pd.Series([1, 2, pd.NA, 4], dtype='Int64')

In [2]: print(x3.to_numpy('int64', na_value=1))
[1 2 1 4]

In [3]: x3.to_numpy('int64', na_value=1)
Out[3]: array([1, 2, 1, 4])

The issue is if you start with dtype=object

Looking into this

Comment From: baloe

Oh yes, I was about to open an issue, too, and name it

to_numpy(): na_value ignored when converting object-type pandas data

floattypeseries = pd.Series( [1,2,None], dtype='Float64')
objecttypeseries = floattypeseries.astype('object')

floattypeseries.to_numpy(dtype=float, na_value=np.nan)   # → succeeds, 'array([ 1.,  2., nan])'
objecttypeseries.to_numpy(dtype=float, na_value=np.nan)  # → fails with  'TypeError: float() argument must be a string or a number, not 'NAType''

Looking for a drop-in replacement as a workaround, my first idea was to use

.to_numpy(na_value=np.nan).astype(float)

but this fails for integer-type pandas data (not containing any <NA>).
This seems to work:

.astype('object').to_numpy(na_value=np.nan).astype(float)