Code Sample
In [2]: df1 = pd.DataFrame({'A': [1, 1, 2], 'B': [1, 2, 2]})
In [3]: df1.dtypes
Out[3]:
A int64
B int64
dtype: object
In [4]: df2 = pd.DataFrame({'A': [1, 1, 2], 'B': [1, 2, 2]}, dtype='Int64')
In [5]: df2.dtypes
Out[5]:
A Int64
B Int64
dtype: object
In [6]: df1.query('A == B')
Out[6]:
A B
0 1 1
2 2 2
In [7]: df2.query('A == B')
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-7-8efe41b297d7> in <module>
----> 1 df2.query('A == B')
~/anaconda3/lib/python3.6/site-packages/pandas/core/frame.py in query(self, expr, inplace, **kwargs)
3229 kwargs["level"] = kwargs.pop("level", 0) + 1
3230 kwargs["target"] = None
-> 3231 res = self.eval(expr, **kwargs)
3232
3233 try:
~/anaconda3/lib/python3.6/site-packages/pandas/core/frame.py in eval(self, expr, inplace, **kwargs)
3344 kwargs["resolvers"] = kwargs.get("resolvers", ()) + tuple(resolvers)
3345
-> 3346 return _eval(expr, inplace=inplace, **kwargs)
3347
3348 def select_dtypes(self, include=None, exclude=None) -> "DataFrame":
~/anaconda3/lib/python3.6/site-packages/pandas/core/computation/eval.py in eval(expr, parser, engine, truediv, local_dict, global_dict, resolvers, level, target, inplace)
335 eng = _engines[engine]
336 eng_inst = eng(parsed_expr)
--> 337 ret = eng_inst.evaluate()
338
339 if parsed_expr.assigner is None:
~/anaconda3/lib/python3.6/site-packages/pandas/core/computation/engines.py in evaluate(self)
71
72 # make sure no names in resolvers and locals/globals clash
---> 73 res = self._evaluate()
74 return reconstruct_object(
75 self.result_type, res, self.aligned_axes, self.expr.terms.return_type
~/anaconda3/lib/python3.6/site-packages/pandas/core/computation/engines.py in _evaluate(self)
112 scope = env.full_scope
113 _check_ne_builtin_clash(self.expr)
--> 114 return ne.evaluate(s, local_dict=scope)
115
116
~/anaconda3/lib/python3.6/site-packages/numexpr/necompiler.py in evaluate(ex, local_dict, global_dict, out, order, casting, **kwargs)
820 # Create a signature
821 signature = [(name, getType(arg)) for (name, arg) in
--> 822 zip(names, arguments)]
823
824 # Look up numexpr if possible.
~/anaconda3/lib/python3.6/site-packages/numexpr/necompiler.py in <listcomp>(.0)
819
820 # Create a signature
--> 821 signature = [(name, getType(arg)) for (name, arg) in
822 zip(names, arguments)]
823
~/anaconda3/lib/python3.6/site-packages/numexpr/necompiler.py in getType(a)
701 if kind == 'S':
702 return bytes
--> 703 raise ValueError("unknown type %s" % a.dtype.name)
704
705
ValueError: unknown type object
Problem description
DataFrame.query
raises ValueError: unknown type object
for boolean comparisons when the dtype is one of the new nullable types. (I have tested this for both Int64
and string
dtypes.)
Output of pd.show_versions()
INSTALLED VERSIONS
------------------
commit : None
python : 3.6.8.final.0
python-bits : 64
OS : Darwin
OS-release : 17.7.0
machine : x86_64
processor : i386
byteorder : little
LC_ALL : None
LANG : en_AU.UTF-8
LOCALE : en_AU.UTF-8
pandas : 1.0.1
numpy : 1.18.1
pytz : 2019.3
dateutil : 2.8.1
pip : 20.0.2
setuptools : 45.2.0.post20200210
Cython : 0.29.15
pytest : 5.3.5
hypothesis : 5.4.1
sphinx : 2.4.0
blosc : None
feather : None
xlsxwriter : 1.2.7
lxml.etree : 4.5.0
html5lib : 1.0.1
pymysql : None
psycopg2 : None
jinja2 : 2.11.1
IPython : 7.12.0
pandas_datareader: None
bs4 : 4.8.2
bottleneck : 1.3.1
fastparquet : None
gcsfs : None
lxml.etree : 4.5.0
matplotlib : 3.1.3
numexpr : 2.7.1
odfpy : None
openpyxl : 3.0.3
pandas_gbq : None
pyarrow : None
pytables : None
pytest : 5.3.5
pyxlsb : None
s3fs : None
scipy : 1.4.1
sqlalchemy : 1.3.13
tables : 3.6.1
tabulate : None
xarray : None
xlrd : 1.2.0
xlwt : 1.2.0
xlsxwriter : 1.2.7
numba : 0.48.0
Comment From: zzapzzap
I can see the difference between 'df1' and 'df2'.
It seems a problem with int64
of df1
, not with Int64
of df2
.
I'll check 'frame.py' file soon.
Moreover, to do correct this code, you can use int64
instead of int32
in df2
.
Comment From: zzapzzap
What version of pandas do you use? Eventually, Released Version(0.25.1) can't solve this bug; but, the current development version(1.1.0.dev0+419.g625441b31) has solved this problem.
I hope it helps you.
Comment From: daviewales
@zzapzzap I'm using pandas 1.0.1 as shown in the output of pd.show_versions()
.
The problem is definitely with df2
and Int64
, because that's the one throwing the error.
Comment From: jorisvandenbossche
@daviewales Thanks for the report!
In general, the new nullable dtypes are not yet much tested with query
. Investigations in the underlying issue or contributions for better support are certainly welcome.
Comment From: TomAugspurger
This is going through numexpr, which generally won't know about pd.NA. We would need to work with the numexpr devs, or more likely avoid passing NA there in the first place.
Comment From: jreback
the nullable types should force the python engine path as numexpr can’t support anything non numpy based
Comment From: sumanau7
Interested to pick this up, should we set
kwargs["engine"] = "python"
for nullable types, before calling self.eval
at core/frame.py
Also what is the recommended way to check if dataframe is of nullable type or not, didn't find a right method exposed at dtypes/api.py
And if this is right way to proceed, what are the other places in code where this check should happen ?
@jreback
Comment From: sumanau7
take
Comment From: eduardopaul
I've just run across this issue using pandas 1.2.3. Has there been any development here?
Comment From: marianoju
I've just run across this issue using pandas 1.3.2. dtype
Int64
causes ValueError: unknown type object
.