Code Sample

In [2]: df1 = pd.DataFrame({'A': [1, 1, 2], 'B': [1, 2, 2]})

In [3]: df1.dtypes
Out[3]:
A    int64
B    int64
dtype: object

In [4]: df2 = pd.DataFrame({'A': [1, 1, 2], 'B': [1, 2, 2]}, dtype='Int64')

In [5]: df2.dtypes
Out[5]:
A    Int64
B    Int64
dtype: object

In [6]: df1.query('A == B')
Out[6]:
   A  B
0  1  1
2  2  2

In [7]: df2.query('A == B')
---------------------------------------------------------------------------
ValueError                                Traceback (most recent call last)
<ipython-input-7-8efe41b297d7> in <module>
----> 1 df2.query('A == B')

~/anaconda3/lib/python3.6/site-packages/pandas/core/frame.py in query(self, expr, inplace, **kwargs)
   3229         kwargs["level"] = kwargs.pop("level", 0) + 1
   3230         kwargs["target"] = None
-> 3231         res = self.eval(expr, **kwargs)
   3232
   3233         try:

~/anaconda3/lib/python3.6/site-packages/pandas/core/frame.py in eval(self, expr, inplace, **kwargs)
   3344         kwargs["resolvers"] = kwargs.get("resolvers", ()) + tuple(resolvers)
   3345
-> 3346         return _eval(expr, inplace=inplace, **kwargs)
   3347
   3348     def select_dtypes(self, include=None, exclude=None) -> "DataFrame":

~/anaconda3/lib/python3.6/site-packages/pandas/core/computation/eval.py in eval(expr, parser, engine, truediv, local_dict, global_dict, resolvers, level, target, inplace)
    335         eng = _engines[engine]
    336         eng_inst = eng(parsed_expr)
--> 337         ret = eng_inst.evaluate()
    338
    339         if parsed_expr.assigner is None:

~/anaconda3/lib/python3.6/site-packages/pandas/core/computation/engines.py in evaluate(self)
     71
     72         # make sure no names in resolvers and locals/globals clash
---> 73         res = self._evaluate()
     74         return reconstruct_object(
     75             self.result_type, res, self.aligned_axes, self.expr.terms.return_type

~/anaconda3/lib/python3.6/site-packages/pandas/core/computation/engines.py in _evaluate(self)
    112         scope = env.full_scope
    113         _check_ne_builtin_clash(self.expr)
--> 114         return ne.evaluate(s, local_dict=scope)
    115
    116

~/anaconda3/lib/python3.6/site-packages/numexpr/necompiler.py in evaluate(ex, local_dict, global_dict, out, order, casting, **kwargs)
    820     # Create a signature
    821     signature = [(name, getType(arg)) for (name, arg) in
--> 822                  zip(names, arguments)]
    823
    824     # Look up numexpr if possible.

~/anaconda3/lib/python3.6/site-packages/numexpr/necompiler.py in <listcomp>(.0)
    819
    820     # Create a signature
--> 821     signature = [(name, getType(arg)) for (name, arg) in
    822                  zip(names, arguments)]
    823

~/anaconda3/lib/python3.6/site-packages/numexpr/necompiler.py in getType(a)
    701     if kind == 'S':
    702         return bytes
--> 703     raise ValueError("unknown type %s" % a.dtype.name)
    704
    705

ValueError: unknown type object

Problem description

DataFrame.query raises ValueError: unknown type object for boolean comparisons when the dtype is one of the new nullable types. (I have tested this for both Int64 and string dtypes.)

Output of pd.show_versions()

INSTALLED VERSIONS
------------------
commit           : None
python           : 3.6.8.final.0
python-bits      : 64
OS               : Darwin
OS-release       : 17.7.0
machine          : x86_64
processor        : i386
byteorder        : little
LC_ALL           : None
LANG             : en_AU.UTF-8
LOCALE           : en_AU.UTF-8

pandas           : 1.0.1
numpy            : 1.18.1
pytz             : 2019.3
dateutil         : 2.8.1
pip              : 20.0.2
setuptools       : 45.2.0.post20200210
Cython           : 0.29.15
pytest           : 5.3.5
hypothesis       : 5.4.1
sphinx           : 2.4.0
blosc            : None
feather          : None
xlsxwriter       : 1.2.7
lxml.etree       : 4.5.0
html5lib         : 1.0.1
pymysql          : None
psycopg2         : None
jinja2           : 2.11.1
IPython          : 7.12.0
pandas_datareader: None
bs4              : 4.8.2
bottleneck       : 1.3.1
fastparquet      : None
gcsfs            : None
lxml.etree       : 4.5.0
matplotlib       : 3.1.3
numexpr          : 2.7.1
odfpy            : None
openpyxl         : 3.0.3
pandas_gbq       : None
pyarrow          : None
pytables         : None
pytest           : 5.3.5
pyxlsb           : None
s3fs             : None
scipy            : 1.4.1
sqlalchemy       : 1.3.13
tables           : 3.6.1
tabulate         : None
xarray           : None
xlrd             : 1.2.0
xlwt             : 1.2.0
xlsxwriter       : 1.2.7
numba            : 0.48.0

Comment From: zzapzzap

I can see the difference between 'df1' and 'df2'. It seems a problem with int64 of df1, not with Int64 of df2. I'll check 'frame.py' file soon. Moreover, to do correct this code, you can use int64 instead of int32 in df2.

Comment From: zzapzzap

What version of pandas do you use? Eventually, Released Version(0.25.1) can't solve this bug; but, the current development version(1.1.0.dev0+419.g625441b31) has solved this problem.

I hope it helps you.

Comment From: daviewales

@zzapzzap I'm using pandas 1.0.1 as shown in the output of pd.show_versions(). The problem is definitely with df2 and Int64, because that's the one throwing the error.

Comment From: jorisvandenbossche

@daviewales Thanks for the report! In general, the new nullable dtypes are not yet much tested with query. Investigations in the underlying issue or contributions for better support are certainly welcome.

Comment From: TomAugspurger

This is going through numexpr, which generally won't know about pd.NA. We would need to work with the numexpr devs, or more likely avoid passing NA there in the first place.

Comment From: jreback

the nullable types should force the python engine path as numexpr can’t support anything non numpy based

Comment From: sumanau7

Interested to pick this up, should we set kwargs["engine"] = "python" for nullable types, before calling self.eval at core/frame.py

Also what is the recommended way to check if dataframe is of nullable type or not, didn't find a right method exposed at dtypes/api.py

And if this is right way to proceed, what are the other places in code where this check should happen ?

@jreback

Comment From: sumanau7

take

Comment From: eduardopaul

I've just run across this issue using pandas 1.2.3. Has there been any development here?

Comment From: marianoju

I've just run across this issue using pandas 1.3.2. dtype Int64 causes ValueError: unknown type object.