• [x] I have checked that this issue has not already been reported.

  • [x] I have confirmed this bug exists on the latest version of pandas.

  • [ ] (optional) I have confirmed this bug exists on the master branch of pandas.


If Dataframe has index which timezone is set to dateutil.tz.tzlocal(), it could not be saved to parquet.

It might be related to #24310

Code Sample, a copy-pastable example

from dateutil.tz import tzlocal
ind = pd.date_range('2020-02-01','2020-04-14').tz_localize(tzlocal())
x = pd.DataFrame([[1,2]]*len(ind), index=ind, columns=['A','B'])
x.to_parquet('tmp.parquet')

Problem description

The code raises ValueError: Unable to convert timezone "tzlocal()" to string.

However saving to e.g. CSV works well:

x.to_csv('tmp.csv')

Output of pd.show_versions()

INSTALLED VERSIONS ------------------ commit : None python : 3.7.1.final.0 python-bits : 64 OS : Darwin OS-release : 18.7.0 machine : x86_64 processor : i386 byteorder : little LC_ALL : en_US.UTF-8 LANG : en_US.UTF-8 LOCALE : en_US.UTF-8 pandas : 1.0.3 numpy : 1.18.2 pytz : 2019.3 dateutil : 2.8.1 pip : 20.0.2 setuptools : 42.0.1.post20191125 Cython : None pytest : 5.3.0 hypothesis : None sphinx : 2.2.0 blosc : None feather : None xlsxwriter : None lxml.etree : 4.4.1 html5lib : None pymysql : 0.9.3 psycopg2 : 2.8.5 (dt dec pq3 ext lo64) jinja2 : 2.10.1 IPython : 7.13.0 pandas_datareader: None bs4 : 4.6.3 bottleneck : None fastparquet : 0.3.2 gcsfs : None lxml.etree : 4.4.1 matplotlib : 3.1.3 numexpr : 2.7.0 odfpy : None openpyxl : None pandas_gbq : None pyarrow : 0.16.0 pytables : None pytest : 5.3.0 pyxlsb : None s3fs : 0.4.2 scipy : 1.3.1 sqlalchemy : 1.3.13 tables : 3.4.4 tabulate : None xarray : None xlrd : 1.1.0 xlwt : None xlsxwriter : None numba : 0.46.0

Comment From: jorisvandenbossche

@vfilimonov dateutil timezones are currently not supported by pyarrow, see https://issues.apache.org/jira/browse/ARROW-5248

So the best option, for now, is to convert the timezone to a datetime.timezone fixed offset of pytz timezone.

Comment From: vfilimonov

Thank you for quick response @jorisvandenbossche!

What would be the easiest way to convert index to fixed offset?

I could think of a workaround by iterating over index and parsing strings:

from dateutil.tz import tzlocal
ind = pd.date_range('2020-02-01','2020-04-14').tz_localize(tzlocal())

ind = [pd.Timestamp(str(_)) for _ in ind]

Comment From: jbrockmendel

@jorisvandenbossche is there any prospect of this being supported in pyarrow? if not it might make sense to add a helpful message for this case?