Pandas version checks

  • [X] I have checked that this issue has not already been reported.

  • [X] I have confirmed this bug exists on the latest version of pandas.

  • [X] I have confirmed this bug exists on the main branch of pandas.

Reproducible Example

>>> import pandas as pd
>>> pd.Series(["2020-01-01", "2020-02-02"], dtype="datetime64[ns]").astype("datetime64[D]")
0   2020-01-01
1   2020-02-02
dtype: datetime64[ns]

Issue Description

Currently, Pandas does not support non ns resolution datetime types for values. The current behavior is to silently coerce other resolutions to ns. In the case of an explicit cast this leads to quite surprising behavior that is difficult to debug. I discovered this while trying to help someone on stackoverflow who could not get their pandas DataFrame to work with numpy.busday_count.

Expected Behavior

Either cast to the requested resolution of datetime64 or inform the user that the cast was not successful.

Installed Versions

INSTALLED VERSIONS ------------------ commit : 58c124feb4dffe46a73a43fbe995421ea361dfee python : 3.9.5.final.0 python-bits : 64 OS : Linux OS-release : 5.10.102.1-microsoft-standard-WSL2 Version : #1 SMP Wed Mar 2 00:30:59 UTC 2022 machine : x86_64 processor : x86_64 byteorder : little LC_ALL : None LANG : C.UTF-8 LOCALE : en_US.UTF-8 pandas : 1.6.0.dev0+75.g58c124feb4 numpy : 1.23.2 pytz : 2022.2.1 dateutil : 2.8.2 setuptools : 44.0.0 pip : 20.0.2 Cython : 0.29.32 pytest : None hypothesis : None sphinx : None blosc : None feather : None xlsxwriter : None lxml.etree : None html5lib : None pymysql : None psycopg2 : None jinja2 : None IPython : None pandas_datareader: None bs4 : None bottleneck : None brotli : None fastparquet : None fsspec : None gcsfs : None matplotlib : None numba : None numexpr : None odfpy : None openpyxl : None pandas_gbq : None pyarrow : None pyreadstat : None pyxlsb : None s3fs : None scipy : None snappy : None sqlalchemy : None tables : None tabulate : None xarray : None xlrd : None xlwt : None zstandard : None tzdata : None

Comment From: jbrockmendel

This now raises, closing.