Pandas version checks
-
[X] I have checked that this issue has not already been reported.
-
[X] I have confirmed this bug exists on the latest version of pandas.
-
[ ] I have confirmed this bug exists on the main branch of pandas.
Reproducible Example
import pandas as pd
import pytest
t=pd.Timestamp("010120")
print(t.unit)
print(t.min, type(t.min))
print(t.max, type(t.max))
t2=pd.Timestamp(2020,1,1)
print(t2.unit)
print(t2.min, type(t2.min))
print(t2.max, type(t2.max))
with pytest.raises(ValueError):
pd.Timestamp(10000,1,1)
Issue Description
While preparing our code for Pandas 2, we noticed the following:
1. Different ways of Timestamp creation ends up in a different timestamp unit
pd.Timestamp("010120")
-> Timestamp('2020-01-01 00:00:00') with unit = 's'
pd.Timestamp(2020, 1, 1)
-> Timestamp('2020-01-01 00:00:00') with `unit = 'us'
Moreover I could create Timestamps, which I cannot reproduce with using pd.Timestamp
.
Let us take the first timestamp from above:
t = pd.Timestamp("010120")
tmax = t.max
We get tmax = Timestamp('292277026596-12-04 15:30:07')
where it is at least not possible to create a Timestamp with a year greater than 9999.
t_impossible = pd.Timestamp(10000,1,1)
lead to
ValueError Traceback (most recent call last)
Cell In[29], line 1
----> 1 pd.Timestamp(10000,1,1)
File ~/venv/myvenv/lib/python3.10/site-packages/pandas/_libs/tslibs/timestamps.pyx:1645, in pandas._libs.tslibs.timestamps.Timestamp.__new__()
ValueError: year 10000 is out of range
I even cannot count on a timestamp that is outside the max values (pd.Timestamp.max = Timestamp('2262-04-11 23:47:16.854775807') and pd.Timestamp.min = Timestamp('1677-09-21 00:12:43.145224193'))
To what extent is the behaviour intentional or erroneous?
With pandas 1.5.3 it was not possible to create timestamps greater than pd.Timestamp.max due to its ns-representation.
Expected Behavior
I don't know if it is even a bug, but I would expect, that I can create timestamp (e.g. year > 10000) and that I can calculate with timestamps (e.g. 2300-01-01 + 100 days) [ not in every unit, but if the unit allows it, why not?
Installed Versions
INSTALLED VERSIONS
python : 3.10.2.final.0 python-bits : 64 OS : Darwin OS-release : 22.1.0 Version : Darwin Kernel Version 22.1.0: Sun Oct 9 20:14:54 PDT 2022; root:xnu-8792.41.9~2/RELEASE_X86_64 machine : x86_64 processor : i386 byteorder : little LC_ALL : None LANG : None LOCALE : de_DE.UTF-8
pandas : 2.0.0rc1 numpy : 1.23.5 pytz : 2022.6 dateutil : 2.8.2 setuptools : 65.6.3 pip : 22.3.1 Cython : None pytest : 7.2.0 hypothesis : None sphinx : None blosc : None feather : None xlsxwriter : None lxml.etree : 4.9.1 html5lib : None pymysql : None psycopg2 : 2.9.5 jinja2 : 3.1.2 IPython : 8.7.0 pandas_datareader: None bs4 : 4.11.1 bottleneck : None brotli : None fastparquet : None fsspec : 2022.11.0 gcsfs : 2022.11.0 matplotlib : 3.6.2 numba : None numexpr : 2.8.4 odfpy : None openpyxl : 3.0.10 pandas_gbq : None pyarrow : 10.0.1 pyreadstat : None pyxlsb : None s3fs : None scipy : 1.9.3 snappy : None sqlalchemy : 1.4.45 tables : None tabulate : 0.9.0 xarray : None xlrd : None xlwt : None zstandard : None tzdata : None
Comment From: MarcoGorelli
Hey @kaibir ,
thanks for the report, this looks like a bug