- [X] I have checked that this issue has not already been reported.
- [X] I have confirmed this bug exists on the latest version of pandas.
- [ ] (optional) I have confirmed this bug exists on the master branch of pandas.
Code Sample, a copy-pastable example
From StackOverflow question posted by Usal
df=pd.DataFrame({'Col1':[1, '-','-'], 'Col2':['-','-',2]})
df.sum(axis=1)
# 0 0.0
# 1 0.0
# 2 0.0
# dtype: float64
df.sum(axis=0)
# Series([], dtype: float64)
Problem description
Inconsistent output when same operation i.e. df.sum
is applied over axis 0 and 1.
Expected Output
df.sum(axis=0)
# Col1 0.0
# Col2 0.0
# dtype: float64
df.sum(axis=1)
# 0 0.0
# 1 0.0
# 2 0.0
# dtype: float64
Output of pd.show_versions()
INSTALLED VERSIONS
------------------
commit : 7d32926db8f7541c356066dcadabf854487738de
python : 3.8.5.final.0
python-bits : 64
OS : Linux
OS-release : 5.8.0-43-generic
Version : #49~20.04.1-Ubuntu SMP Fri Feb 5 09:57:56 UTC 2021
machine : x86_64
processor : x86_64
byteorder : little
LC_ALL : None
LANG : en_IN
LOCALE : en_IN.ISO8859-1
pandas : 1.2.2
numpy : 1.19.5
pytz : 2019.3
dateutil : 2.7.3
pip : 20.0.2
setuptools : 45.2.0
Cython : None
pytest : None
hypothesis : None
sphinx : None
blosc : None
feather : None
xlsxwriter : None
lxml.etree : None
html5lib : 1.0.1
pymysql : None
psycopg2 : None
jinja2 : 2.10.1
IPython : 7.13.0
pandas_datareader: None
bs4 : None
bottleneck : None
fsspec : None
fastparquet : None
gcsfs : None
matplotlib : 3.1.2
numexpr : None
odfpy : None
openpyxl : None
pandas_gbq : None
pyarrow : None
pyxlsb : None
s3fs : None
scipy : None
sqlalchemy : None
tables : None
tabulate : None
xarray : None
xlrd : None
xlwt : None
numba : None
Comment From: attack68
I changed the example for consistency, and confirm the result. No idea about cause or solution.
df=pd.DataFrame({'Col1':[1,'-'], 'Col2':['-',2]}, index=['Row1', 'Row2'])
print(df.sum(axis=1))
print(df.sum(axis=0))
Row1 0.0
Row2 0.0
dtype: float64
Series([], dtype: float64)
Comment From: jbrockmendel
With nuisance columns no longer silently dropped, these both now correctly raise. Closing.