Pandas version checks

  • [X] I have checked that this issue has not already been reported.

  • [X] I have confirmed this bug exists on the latest version of pandas.

  • [X] I have confirmed this bug exists on the main branch of pandas.

Reproducible Example

import pandas as pd
import numpy as np

df = pd.DataFrame({
    "cat_1": pd.Categorical(list("AB"), categories=list("ABCDE"), ordered=True),
    "cat_2": pd.Categorical([1, 2], categories=[1, 2, 3], ordered=True),
    "value_1": np.random.uniform(size=2),
})

chunk1 = df[df.cat_1 == "A"]
chunk2 = df[df.cat_1 == "B"]

df1 = chunk1.groupby("cat_1", observed=False).min()
df2 = chunk2.groupby("cat_1", observed=False).min()
df3 = pd.concat([df1, df2], ignore_index=False)

res3 = df3.groupby(level=0, observed=False).min()
print(f"\n{res3}")

Issue Description

When performing a groupby/min with a categorical dtype and observed=False, the results differ between 1.5.3 (and 2.0) and 2.1.

Output with 1.5.3 or 2.0:

      cat_2   value_1
cat_1
A         1  0.384993
B         2  0.955231
C       NaN       NaN
D       NaN       NaN
E       NaN       NaN

Output with the latest main:

      cat_2   value_1
cat_1
A         1  0.297557
B         1  0.081856
C         1       NaN
D         1       NaN
E         1       NaN

The change can be traced to this PR:

  • https://github.com/pandas-dev/pandas/pull/52120

Expected Behavior

I'm not sure if the changed behavior is intended. Please advise.

Installed Versions

commit : d22d1f2db0bc7846f679b2b0a572216f23fa83cc python : 3.8.16.final.0 python-bits : 64 OS : Darwin OS-release : 22.3.0 Version : Darwin Kernel Version 22.3.0: Thu Jan 5 20:50:36 PST 2023; root:xnu-8792.81.2~2/RELEASE_ARM64_T6020 machine : arm64 processor : arm byteorder : little LC_ALL : None LANG : en_US.UTF-8 LOCALE : en_US.UTF-8 pandas : 2.1.0.dev0+293.gd22d1f2db0 numpy : 1.23.5 pytz : 2022.7.1 dateutil : 2.8.2 setuptools : 67.4.0 pip : 23.0.1 Cython : 0.29.33 pytest : 7.2.1 hypothesis : 6.68.2 sphinx : 4.5.0 blosc : None feather : None xlsxwriter : 3.0.8 lxml.etree : 4.9.2 html5lib : 1.1 pymysql : 1.0.2 psycopg2 : 2.9.3 jinja2 : 3.1.2 IPython : 8.11.0 pandas_datareader: None bs4 : 4.11.2 bottleneck : 1.3.6 brotli : fastparquet : 2023.2.0 fsspec : 2023.1.0 gcsfs : 2023.1.0 matplotlib : 3.6.3 numba : 0.56.4 numexpr : 2.8.3 odfpy : None openpyxl : 3.1.0 pandas_gbq : None pyarrow : 11.0.0 pyreadstat : 1.2.1 pyxlsb : 1.0.10 s3fs : 2023.1.0 scipy : 1.10.1 snappy : sqlalchemy : 2.0.4 tables : 3.7.0 tabulate : 0.9.0 xarray : 2023.1.0 xlrd : 2.0.1 zstandard : 0.19.0 tzdata : None qtpy : None pyqt5 : None

Comment From: DeaMariaLeon

Thank you for reporting @j-bennet.

I get this when I run your example, on pandas version 2.1.0.dev0+171.gc293caf2e9:

      cat_2   value_1
cat_1                
A         1  0.837825
B         2  0.687282
C       NaN       NaN
D       NaN       NaN
E       NaN       NaN 

Comment From: MarcoGorelli

I can't reproduce this either, I'm also getting NaN for categories C D E with the latest release candidate

      cat_2   value_1
cat_1
A         1  0.251036
B         2  0.204336
C       NaN       NaN
D       NaN       NaN
E       NaN       NaN

Comment From: j-bennet

It's reproducible with the latest main, 2.1.0.dev0+295.g25c1942c39, or with the latest nightly, 2.1.0.dev0+293.gd22d1f2db0.

Comment From: MarcoGorelli

ah yes, can reproduce with the latest nightly, thanks!

so, the regression is between 2.0 and 2.1 - updating the title then, thanks for the report!

cc @jbrockmendel

Comment From: j-bennet

git bisect says it was introduced here:

https://github.com/pandas-dev/pandas/commit/14affe0808078ee380a868df544701f372b6b02f

Comment From: jbrockmendel

Not intended.

In WrappedCythonOp._ea_wrap_cython_operation there is a case for isinstance(values, Categorical). The last few lines of that case are

            if self.how in self.cast_blocklist:
                return res_values
            return values._from_backing_data(res_values)

I think the fix here is:

            if self.how in self.cast_blocklist:
                return res_values
+            elif self.how in ["first", "last", "min", "max"]:
+                res_values[result_mask==1] = -1
            return values._from_backing_data(res_values)

Comment From: DeaMariaLeon

@j-bennet do you want to do the PR to fix it? If you don't I'll do it. Could you let me know please?

Comment From: j-bennet

@DeaMariaLeon Go ahead, I'm not familiar enough with the codebase. Thank you.

Comment From: j-bennet

Thank you @DeaMariaLeon .