Here is a workaround how to achieve this manually:

import pandas as pd
import numpy as np
from numpy.random import rand

dfPP=pd.DataFrame(rand(3,5),columns=rand(5),index=rand(3))
nanarr=np.empty(dfPP.shape[0])
nanarr[:]=np.NAN
new_point=dfPP.columns.values.mean()
dfPP.loc[:,new_point]=nanarr
dfPP.sort(axis=1,inplace=True)
dfPP.head()
0.211451507884 0.574409309122 0.626609642735 0.728622716072 0.752814445643 0.865750234955
0.340822 0.451636 0.292137 NaN 0.162465 0.481506 0.384237
0.996621 0.997825 0.957920 NaN 0.728265 0.916599 0.286137
0.711955 0.091902 0.951715 NaN 0.363268 0.344484 0.661254
dfPP=dfPP.interpolate(method='values',axis=1)
dfPP.head()
0.211451507884 0.574409309122 0.626609642735 0.728622716072 0.752814445643 0.865750234955
0.340822 0.451636 0.292137 0.248244 0.162465 0.481506 0.384237
0.996621 0.997825 0.957920 0.880183 0.728265 0.916599 0.286137
0.711955 0.091902 0.951715 0.752529 0.363268 0.344484 0.661254

Comment From: jreback

pls provide an example of what you are looking in the top of the issue

Comment From: den-run-ai

provided the example above, so the new optional arguments are the following:

DataFrame.interpolate(new_columns=[x,y,z], new_rows=[a,b,c], _args, *_kwargs)

Comment From: mroeschke

Thanks for the suggestion, but since there hasn't been much community or core dev interest in years going to close. Happy to reopen if there's renewed interest