Pandas version checks

  • [X] I have checked that this issue has not already been reported.

  • [X] I have confirmed this bug exists on the latest version of pandas.

  • [ ] I have confirmed this bug exists on the main branch of pandas.

Reproducible Example

For a parquet dataset with a datetime column "Expiration", this works

pd.read_parquet("spx.parquet", dtype_backend="numpy_nullable")["Expiration"].dt.day_name()

and this doesn't

pd.read_parquet("spx.parquet", dtype_backend="pyarrow")["Expiration"].dt.day_name()

Issue Description

When reading the parquet file with dtype_backend="pyarrow", the .dt accessor does not exist on the column "Expiration".

The dtype is

>>> spx["Expiration"].dtype
# timestamp[us][pyarrow]

Expected Behavior

The .dt accessor should be accessible regardless of which data backend is used.

Installed Versions

INSTALLED VERSIONS ------------------ commit : 478d340667831908b5b4bf09a2787a11a14560c9 python : 3.11.2.final.0 python-bits : 64 OS : Darwin OS-release : 22.2.0 Version : Darwin Kernel Version 22.2.0: Fri Nov 11 02:03:51 PST 2022; root:xnu-8792.61.2~4/RELEASE_ARM64_T6000 machine : arm64 processor : arm byteorder : little LC_ALL : None LANG : en_US.UTF-8 LOCALE : en_US.UTF-8 pandas : 2.0.0 numpy : 1.24.2 pytz : 2022.7.1 dateutil : 2.8.2 setuptools : 65.5.0 pip : 23.0.1 Cython : None pytest : None hypothesis : None sphinx : None blosc : None feather : None xlsxwriter : None lxml.etree : None html5lib : None pymysql : None psycopg2 : None jinja2 : 3.1.2 IPython : 8.11.0 pandas_datareader: None bs4 : 4.11.2 bottleneck : None brotli : None fastparquet : None fsspec : None gcsfs : None matplotlib : 3.7.1 numba : None numexpr : None odfpy : None openpyxl : None pandas_gbq : None pyarrow : 11.0.0 pyreadstat : None pyxlsb : None s3fs : None scipy : 1.10.1 snappy : None sqlalchemy : None tables : None tabulate : None xarray : None xlrd : None zstandard : None tzdata : 2023.3 qtpy : None pyqt5 : None