Reproducible Example

import pandas as pd
import numpy as np

data = {
    'integers': np.linspace(-10_000_000, 10_000_000, 100),
    'small_integers': np.linspace(1, 200, 100),
}
df = pd.DataFrame(data)

df['integers'] = df['integers'].astype('int64')
df['small_integers'] = df['small_integers'].astype('uint8')

print(df.dtypes)
# integers          int64
# small_integers    uint8
# dtype: object

print(df.describe())
#            integers  small_integers
# count  1.000000e+02      100.000000
# mean   0.000000e+00      100.010000
# std    5.860907e+06       58.040302
# min   -1.000000e+07        1.000000
# 25%   -4.999999e+06       50.500000
# 50%    0.000000e+00      100.000000
# 75%    4.999999e+06      149.500000
# max    1.000000e+07      200.000000

print(df.agg(['min', 'max']))
#      integers  small_integers
# min -10000000               1
# max  10000000             -56

Issue Description

describe works ok, but agg works wrong with uint8 (may be other uint too)

Expected Behavior

print(df.agg(['min', 'max']))
#      integers  small_integers
# min -10000000               1
# max  10000000             200

Installed Versions

INSTALLED VERSIONS ------------------ commit : 66e3805b8cabe977f40c05259cc3fcf7ead5687d python : 3.7.10.final.0 python-bits : 64 OS : Linux OS-release : 4.14.304-226.531.amzn2.x86_64 Version : #1 SMP Wed Feb 1 21:34:38 UTC 2023 machine : x86_64 processor : byteorder : little LC_ALL : C.UTF-8 LANG : C.UTF-8 LOCALE : en_US.UTF-8 pandas : 1.3.5 numpy : 1.21.6 pytz : 2019.3 dateutil : 2.8.2 pip : 23.0 setuptools : 59.3.0 Cython : 0.29.15 pytest : 5.3.5 hypothesis : 5.5.4 sphinx : 2.4.0 blosc : None feather : None xlsxwriter : 1.2.7 lxml.etree : 4.9.2 html5lib : 1.0.1 pymysql : None psycopg2 : None jinja2 : 3.1.2 IPython : 7.34.0 pandas_datareader: None bs4 : 4.8.2 bottleneck : 1.3.2 fsspec : 2023.1.0 fastparquet : None gcsfs : None matplotlib : 3.1.3 numexpr : 2.7.1 odfpy : None openpyxl : 3.0.3 pandas_gbq : None pyarrow : 11.0.0 pyxlsb : None s3fs : 0.4.2 scipy : 1.4.1 sqlalchemy : 1.3.13 tables : 3.6.1 tabulate : 0.9.0 xarray : None xlrd : 1.2.0 xlwt : 1.3.0 numba : 0.56.4

Comment From: jayendra-patil33

The bug is not reproducible on the main branch.

Comment From: topper-123

I see the expected behavior on the main branch as well, so this looks fixed.

From your install version, I see that you use pandas v1.3 which isn't supported any more, so this may have been fixed quite a while ago. Can you please always check if the reported bug is present in the latest release, before filing an issue.

I'm closing this issue.