Code Sample, a copy-pastable example if possible
In 0.18.1, a single NaN in a column will cause the reported percentiles to all be NaN. In 0.18.0 and according to the documentation, NaNs are excluded.
import pandas as pd
import numpy as np
df = pd.DataFrame(data={'blah': range(10) + [np.nan]})
df.describe(percentiles=[0.1, 0.5, 0.9])
blah
count 10.00000
mean 4.50000
std 3.02765
min 0.00000
10% NaN
50% NaN
90% NaN
max 9.00000
Expected Output
blah
count 10.00000
mean 4.50000
std 3.02765
min 0.00000
10% 0.90000
50% 4.50000
90% 8.10000
max 9.00000
output of pd.show_versions()
INSTALLED VERSIONS
commit: None python: 2.7.11.final.0 python-bits: 64 OS: Darwin OS-release: 15.5.0 machine: x86_64 processor: i386 byteorder: little LC_ALL: None LANG: en_US.UTF-8
pandas: 0.18.1 nose: 1.3.7 pip: 8.1.2 setuptools: 20.3 Cython: 0.23.4 numpy: 1.11.0 scipy: 0.17.0 statsmodels: 0.6.1 xarray: None IPython: 4.1.2 sphinx: 1.3.5 patsy: 0.4.0 dateutil: 2.5.3 pytz: 2016.4 blosc: None bottleneck: 1.0.0 tables: 3.2.2 numexpr: 2.5 matplotlib: 1.5.1 openpyxl: 2.3.2 xlrd: 0.9.4 xlwt: 1.0.0 xlsxwriter: 0.8.4 lxml: 3.6.0 bs4: 4.4.1 html5lib: None httplib2: None apiclient: None sqlalchemy: 1.0.12 pymysql: None psycopg2: 2.6.1 (dt dec pq3 ext) jinja2: 2.8 boto: 2.39.0 pandas_datareader: None
Comment From: jreback
this is a duplicate of #13098 , closed by #13122 and will be in forthcoming 0.18.2
thanks for the report