Code Sample, a copy-pastable example if possible
df = pd.DataFrame({'items':[1,2,3], 'test': [2,3,4]})
df.items
Expected Output
0 1
1 2
2 3
Name: items, dtype: int64
Given Output
AttributeError: 'DataFrame' object has no attribute 'items'
output of pd.show_versions()
INSTALLED VERSIONS
commit: None python: 2.7.12.final.0 python-bits: 64 OS: Windows OS-release: 10 machine: AMD64 processor: Intel64 Family 6 Model 60 Stepping 3, GenuineIntel byteorder: little LC_ALL: None LANG: None
pandas: 0.17.0 nose: 1.3.7 pip: 8.1.2 setuptools: 7.0 Cython: 0.24.1 numpy: 1.9.3 scipy: 0.16.0 statsmodels: 0.6.1 IPython: 5.0.0 sphinx: 1.4.1 patsy: 0.4.1 dateutil: 2.5.3 pytz: 2016.6.1 blosc: None bottleneck: 1.0.0 tables: 3.2.2 numexpr: 2.4.4 matplotlib: 1.4.3 openpyxl: 2.3.2 xlrd: 1.0.0 xlwt: 1.1.2 xlsxwriter: 0.9.2 lxml: 3.6.1 bs4: 4.3.2 html5lib: 0.9999999 httplib2: None apiclient: None sqlalchemy: 1.0.13 pymysql: 0.6.6.None psycopg2: None
Comment From: TomAugspurger
Probably related to https://github.com/pydata/pandas/issues/13918
You should use df['items']
for accessing columns, df.items
is a convenient shortcut, but may conflict with DataFrame methods. This one is a bit special since it's IIRC .items
is a method on py3 but not py2.