A small, complete example of the issue
The output of pd.infer_freq
is "D" while pd.to_timedelta
expects "1D".
import pandas as pd
dates = pd.date_range(start='2016-10-01', end='2016-10-10', freq='1D')
freq = pd.infer_freq(dates)
delta = pd.to_timedelta(freq)
Expected Output
delta = Timedelta('1 days 00:00:00')
>>> import pandas as pd
>>> dates = pd.date_range(start='2016-10-01', end='2016-10-10', freq='1D')
>>> dates
DatetimeIndex(['2016-10-01', '2016-10-02', '2016-10-03', '2016-10-04',
'2016-10-05', '2016-10-06', '2016-10-07', '2016-10-08',
'2016-10-09', '2016-10-10'],
dtype='datetime64[ns]', freq='D')
>>> freq = pd.infer_freq(dates)
>>> freq
'D'
>>> delta = pd.to_timedelta(freq)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/home/iivanov/anaconda2/lib/python2.7/site-packages/pandas/util/decorators.py", line 91, in wrapper
return func(*args, **kwargs)
File "/home/iivanov/anaconda2/lib/python2.7/site-packages/pandas/tseries/timedeltas.py", line 102, in to_timedelta
box=box, errors=errors)
File "/home/iivanov/anaconda2/lib/python2.7/site-packages/pandas/tseries/timedeltas.py", line 148, in _coerce_scalar_to_timedelta_type
result = tslib.convert_to_timedelta(r, unit, errors)
File "pandas/tslib.pyx", line 2941, in pandas.tslib.convert_to_timedelta (pandas/tslib.c:52631)
File "pandas/tslib.pyx", line 3256, in pandas.tslib.convert_to_timedelta64 (pandas/tslib.c:56028)
File "pandas/tslib.pyx", line 3188, in pandas.tslib.parse_timedelta_string (pandas/tslib.c:54877)
ValueError: unit abbreviation w/o a number
Output of pd.show_versions()
Comment From: chris-b1
pd.to_timedelta
can only handle fixed deltas (basically days and finer) - it isn't an API guarantee that frequency strings can be parsed as a delta, and in fact some frequencies can't be converted to a timedelta.
In [254]: dates = pd.bdate_range(start='2014-01-01', periods=10)
In [255]: pd.infer_freq(dates)
Out[255]: 'B'
If you need to convert a frequency string into a DateOffset
object, which can be a fixed or relative delta, use the to_offset
function.
In [253]: from pandas.tseries.frequencies import to_offset
In [256]: to_offset('D')
Out[256]: <Day>
In [257]: to_offset('2D')
Out[257]: <2 * Days>
In [258]: to_offset('B')
Out[258]: <BusinessDay>
Comment From: jorisvandenbossche
BTW, you can convert such an offset to a timedelta for certain types:
In [19]: pd.to_timedelta(to_offset('D'))
Out[19]: Timedelta('1 days 00:00:00')
In [20]: pd.to_timedelta(to_offset('B'))
...
ValueError: Invalid type for timedelta scalar: <class 'pandas.tseries.offsets.BusinessDay'>
(or alternative to_offset('D').delta
)
As @chris-b1 noted above, relative offsets cannot be converted to a timedelta, so this also errors.
Comment From: idanivanov
Thank you for the comments! It makes sense now.