I have DataFrame
:
import pandas as pd
import datetime as datetime
a = pd.DataFrame({'id': [1, 2, 3, 2],
'my_date': [datetime.datetime(2017, 1, i) for i in range(1, 4)] + [datetime.datetime(2017, 1, 1)],
'num': [2, 3, 1, 4]
})
print (a.dtypes)
id int64
my_date datetime64[ns]
num int64
dtype: object
I try aggreagate by pd.Series.nunique
, but get wrong output for datetimes:
grouped_a = a.groupby('id').agg({'my_date': pd.Series.nunique,
'num': pd.Series.nunique}).reset_index()
grouped_a.columns = ['id', 'num_unique_num', 'num_unique_my_date']
print (grouped_a)
id num_unique_num num_unique_my_date
0 1 1 1970-01-01 00:00:00.000000001
1 2 2 1970-01-01 00:00:00.000000002
2 3 1 1970-01-01 00:00:00.000000001
My solution is use nunique
which works nice.
grouped_a = a.groupby('id').agg({'my_date': 'nunique',
'num': 'nunique'}).reset_index()
grouped_a.columns = ['id', 'num_unique_num', 'num_unique_my_date']
print (grouped_a)
id num_unique_num num_unique_my_date
0 1 1 1
1 2 2 2
2 3 1 1
But why does not work first solution? Bug?
print (pd.show_versions())
INSTALLED VERSIONS
------------------
commit: None
python: 3.5.1.final.0
python-bits: 64
OS: Windows
OS-release: 7
machine: AMD64
processor: Intel64 Family 6 Model 42 Stepping 7, GenuineIntel
byteorder: little
LC_ALL: None
LANG: sk_SK
LOCALE: None.None
pandas: 0.19.2+0.g825876c.dirty
nose: 1.3.7
pip: 8.1.1
setuptools: 20.3
Cython: 0.23.4
numpy: 1.11.0
scipy: 0.17.0
statsmodels: 0.6.1
xarray: None
IPython: 4.1.2
sphinx: 1.3.1
patsy: 0.4.0
dateutil: 2.5.1
pytz: 2016.2
blosc: None
bottleneck: 1.0.0
tables: 3.2.2
numexpr: 2.5.1
matplotlib: 1.5.1
openpyxl: 2.3.2
xlrd: 0.9.4
xlwt: 1.0.0
xlsxwriter: 0.8.4
lxml: 3.6.0
bs4: 4.4.1
html5lib: 0.999
httplib2: None
apiclient: None
sqlalchemy: 1.0.12
pymysql: None
psycopg2: None
jinja2: 2.8
boto: 2.39.0
pandas_datareader: 0.2.1
None
Comment From: jreback
duplicate of https://github.com/pandas-dev/pandas/issues/14423
the fix actually is pretty simple, pls see the other issue.