df.to_csv('transactions.x', header=False, doublequote=False)

While I am trying to use some of the parameters in dataframe to_csv function, it throws an TypeError, such as TypeError: to_csv() got an unexpected keyword argument 'doublequote'

My pandas version is 0.19.2 (Checked with print(pd.version)) I am using Python 3.5

The following official document is based on 0.19.2. Although, I am having type errors, it is stated that these parameters can be used as an optional. http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.to_csv.html

Do you guys have any idea about it?

Thank you.

Output of pd.show_versions()

pandas: 0.19.2 nose: None pip: 9.0.1 setuptools: 35.0.1 Cython: None numpy: 1.12.1 scipy: 0.19.0 statsmodels: None xarray: None IPython: None sphinx: None patsy: None dateutil: 2.6.0 pytz: 2017.2 blosc: None bottleneck: 1.2.0 tables: 3.4.2 numexpr: 2.6.2 matplotlib: None openpyxl: None xlrd: 1.0.0 xlwt: None xlsxwriter: None lxml: None bs4: None html5lib: None httplib2: None apiclient: None sqlalchemy: 1.1.9 pymysql: None psycopg2: None jinja2: None boto: None pandas_datareader: None

Comment From: TomAugspurger

Would df happen to be a Series instead of a DataFrame? Their writers aren't 100% equivalent.

Comment From: jackalhan

Actually, After I execute the following command, df = pd.read_sql (......, connection) I can call df.to_csv('transactions.x', header=False, doublequote=False) successfully because the result is a dataframe object, but when I continue to do something with df object such as df = df.groupby(['Transactions'])['Items'].apply(','.join), the command df.to_csv('transactions.x', header=False, doublequote=False) becomes invalidated. So, how to cast the apply function to the dataframe in order to use these optional parameters? Thank you.

Comment From: TomAugspurger

Either make your slice ['Items'] return a dataframe with [['Items']] or convert the series to a DataFrame with ['Item'].to_frame()

Comment From: jackalhan

By typing following command df = df.groupby(['Transactions'])[['Items']].apply(','.join) throws the same error, on the other hand if I want to use df = df.groupby(['Transactions'])[['Items']].apply(','.join).to_frame(), it does not throw error but output is showing the "Items" instead of real items such as a, b, c, .... If i use the last option, df = df.groupby(['Transactions'])['Items'].apply(','.join).to_frame(), it thows the following error _csv.Error: need to escape, but no escapechar set

Comment From: jackalhan

After using following the command df = df.groupby(['Transactions'])['Items'].apply(','.join), dataframe becomes series.

In order to cast series to dataframe, this command df = df.groupby(['Transactions'])['Items'].apply(','.join).to_frame() should be used instead.

Finally, to export it as a CSV with non-quote style by avoiding escape char, you need to end up with the following command df.to_csv('transactions.x', header=False, quoting=csv.QUOTE_NONE, escapechar=' ') #or whatever escapechar.

Hopefully, it helps for everyone. Thanks