My code

from pandas import Series
import numpy as np

s = Series([0, 1, np.nan, 3])
print ("Results before")
print (s)

s.interpolate()
print ("Results after")
print (s)

s.astype(float).interpolate(method='linear', inplace=True)
print ("Results after after")
print (s)

My output

python ./test_get2.py 
Results before
0    0.0
1    1.0
2    NaN
3    3.0
dtype: float64
Results after
0    0.0
1    1.0
2    NaN
3    3.0
dtype: float64
Results after after
0    0.0
1    1.0
2    NaN
3    3.0
dtype: float64

I'm not sure what I'm doing wrong here. Perhaps I don't have a dependency installed that I need. Any ideas would be helpful.

Output of pd.show_versions()

INSTALLED VERSIONS ------------------ commit: None python: 3.5.2.final.0 python-bits: 64 OS: Linux OS-release: 4.4.0-71-generic machine: x86_64 processor: x86_64 byteorder: little LC_ALL: None LANG: en_US.UTF-8 LOCALE: en_US.UTF-8 pandas: 0.20.1 pytest: None pip: 9.0.1 setuptools: 20.7.0 Cython: None numpy: 1.12.1 scipy: None xarray: None IPython: None sphinx: None patsy: None dateutil: 2.6.0 pytz: 2017.2 blosc: None bottleneck: None tables: None numexpr: None feather: None matplotlib: None openpyxl: None xlrd: None xlwt: None xlsxwriter: 0.7.3 lxml: None bs4: 4.4.1 html5lib: 0.999 sqlalchemy: None pymysql: None psycopg2: None jinja2: 2.8 s3fs: None pandas_gbq: None pandas_datareader: None

Comment From: max-sixty

In [6]: s.astype(float).interpolate(method='linear')
Out[6]:
0    0.0
1    1.0
2    2.0
3    3.0
dtype: float64

or

In [7]: s.interpolate(method='linear', inplace=True)

In [8]: s
Out[8]:
0    0.0
1    1.0
2    2.0
3    3.0
dtype: float64

Generally you'll find it easier to do s=s.func, rather than using inplace

Comment From: TomAugspurger

In [86]: s.astype(float) is s
Out[86]: False

So your inplace interpolate wasn't operating on your variable called s. Like @MaximilianR said, you're better off avoiding inplace.