Code Sample, a copy-pastable example if possible

import pandas as pd
import random

str_values = ['a', 'b']

data = [[random.choice(str_values), random.choice(str_values),
         random.randint(0, 10), random.randint(1, 20), random.random()] for _ in range(100)]

df = pd.DataFrame(data, columns=['s0', 's1',  'int0', 'int1', 'float0'])

group_index_true = df.groupby(['s0', 's1'], as_index=True)
print(group_index_true.mean())
print(group_index_true.std())

group_index_false = df.groupby(['s0', 's1'], as_index=False)
print(group_index_false.mean())
print(group_index_false.std())

Problem description

The last line gives an AtributeError

Traceback (most recent call last):
  File "pandasbug.py", line 17, in <module>
    print(group_index_false.std())
  File "/home/user/pyenv/lib/python3.5/site-packages/pandas/core/groupby.py", line 1083, in std
    return np.sqrt(self.var(ddof=ddof, **kwargs))
AttributeError: 'str' object has no attribute 'sqrt'

If the as_index is set to False in the groupby operation, the sqrt is applied to all the columns, even to the columns that where used to group, which raises an error when at least one column is not numeric.

This error is related to issues: #11300, #14547, #11507, #10355

Expected Output

           int0       int1    float0
s0 s1                               
a  a   4.440000  11.080000  0.498588
   b   4.352941  11.941176  0.557430
b  a   5.619048  10.190476  0.442739
   b   4.864865  11.648649  0.522814

           int0      int1    float0
s0 s1                              
a  a   3.176476  4.864155  0.274068
   b   3.936070  4.955686  0.260301
b  a   3.138092  6.384505  0.341268
   b   3.172470  6.051704  0.260665

  s0 s1      int0       int1    float0
0  a  a  4.440000  11.080000  0.498588
1  a  b  4.352941  11.941176  0.557430
2  b  a  5.619048  10.190476  0.442739
3  b  b  4.864865  11.648649  0.522814

  s0 s1      int0       int1    float0               
0  a  a   3.176476  4.864155  0.274068
1  a  b   3.936070  4.955686  0.260301
2  b  a   3.138092  6.384505  0.341268
3  b  b   3.172470  6.051704  0.260665

Output of pd.show_versions()

INSTALLED VERSIONS ------------------ commit: None python: 3.5.2.final.0 python-bits: 64 OS: Linux OS-release: 4.4.0-81-generic machine: x86_64 processor: x86_64 byteorder: little LC_ALL: None LANG: es_ES.UTF-8 LOCALE: es_ES.UTF-8 pandas: 0.20.2 pytest: None pip: 9.0.1 setuptools: 36.0.1 Cython: 0.25.1 numpy: 1.13.0 scipy: 0.18.1 xarray: None IPython: 5.1.0 sphinx: None patsy: None dateutil: 2.6.0 pytz: 2017.2 blosc: None bottleneck: 1.2.0 tables: None numexpr: None feather: None matplotlib: 1.5.3 openpyxl: None xlrd: None xlwt: None xlsxwriter: 0.7.3 lxml: None bs4: 4.4.1 html5lib: 0.999 sqlalchemy: 1.1.5 pymysql: None psycopg2: 2.6.2 (dt dec pq3 ext lo64) jinja2: 2.8 s3fs: None pandas_gbq: None pandas_datareader: None

Comment From: jorisvandenbossche

@indonoso As you already linked to those issues, I think this is a duplicate of https://github.com/pandas-dev/pandas/issues/10355 (with the only difference here is that the "modifying key column" result in an error because it are strings, but the cause is the same). Therefore I am going to close this issue (and link to it in #10355). But, if you would be interested, very welcome to do a PR to fix this! There were already a few PRs that tried this (but the submitter didn't respond anymore), so probably you can start from that work.

Comment From: jorisvandenbossche

You probably know, but as reference, an easy work-around for now is not using as_index=False and reset_index afterwards:

In [184]: group_index_true.std().reset_index()
Out[184]: 
  s0 s1      int0      int1    float0
0  a  a  2.961578  6.205124  0.278510
1  a  b  3.544489  5.848170  0.265557
2  b  a  3.020564  4.514527  0.212534
3  b  b  2.873397  6.408684  0.286971

Comment From: umarmurtaza

Thanks jorisvandenbossche, your suggestion worked for one of my friend who was having this particular issue.

Comment From: Niroznak

Hi, i know this case is closed, but as i looked for solution for the same issue i found another work around that i found works better for me: i apply the groupby with as_index=True, and then create a dataframe with 2 columns, 1 of the groupby index, and 1 for groupby values. i then merged this dataframe to my main dataframe on the column i used as index for the groupby dataframe.

i hope its usefull :)

here is the code i used: x=df_temp[['key2','mean']].groupby(['key2'],as_index=True)['mean'] df_temp1=pd.DataFrame({'key2':x.std(ddof=1).index,'Precision':x.std(ddof=1).values}) df_temp=pd.merge(df_temp, df_temp1,on='key2')