Code Sample, a copy-pastable example if possible
import numpy as np
import pandas as pd
import datetime
df = pd.DataFrame({'a': [1, np.nan, 5],
'datetime':pd.to_datetime(['20170403', '20170404', '20170405'])})
df.set_index('datetime', inplace=True)
df.rolling('2d', 1).apply(np.nanmin)
Problem description
the above generates
a
datetime
2017-04-03 1.0
2017-04-04 NaN
2017-04-05 5.0
when use datetimeIndex
, if a row has NaN
value it is not fed to input of apply
when creating output for that row. To illustrate this, I use:
def foo(x):
print(x)
return np.nanmin(x)
print(df.rolling('2d', 1).apply(foo))
and got printed value:
[ 1.]
[ nan 5.]
the second row is skipped. This issue doesn't not exist when integer index is used:
df = pd.DataFrame({'a': [1, np.nan, 5]})
def foo(x):
print(x)
return np.nanmin(x)
print(df.rolling(2, 1).apply(foo))
print the following:
[ 1.]
[ 1. nan]
[ nan 5.]
and yields correct results
Expected Output
a
datetime
2017-04-03 1.0
2017-04-04 1.0
2017-04-05 5.0
Output of pd.show_versions()
INSTALLED VERSIONS
------------------
commit: None
python: 3.5.2.final.0
python-bits: 64
OS: Darwin
OS-release: 15.6.0
machine: x86_64
processor: i386
byteorder: little
LC_ALL: None
LANG: None
LOCALE: en_US.UTF-8
pandas: 0.20.3
pytest: 2.8.5
pip: 8.1.2
setuptools: 25.1.6
Cython: 0.23.4
numpy: 1.13.1
scipy: 0.17.0
xarray: None
IPython: 5.1.0
sphinx: 1.4.1
patsy: 0.4.0
dateutil: 2.6.1
pytz: 2017.2
blosc: None
bottleneck: 1.0.0
tables: 3.2.2
numexpr: 2.4.6
feather: None
matplotlib: 1.5.1
openpyxl: 2.3.2
xlrd: 0.9.4
xlwt: 1.0.0
xlsxwriter: 0.8.4
lxml: 3.5.0
bs4: 4.4.1
html5lib: None
sqlalchemy: 1.0.11
pymysql: None
psycopg2: None
jinja2: 2.8
s3fs: None
pandas_gbq: None
pandas_datareader: None
Comment From: gfyoung
@staftermath : That does look a little strange. Investigation and PR to patch are welcome!
Comment From: jreback
duplicate of this: https://github.com/pandas-dev/pandas/issues/15305
fixes are welcome.