Code Sample, a copy-pastable example if possible

import numpy as np
import pandas as pd
import datetime

df = pd.DataFrame({'a': [1, np.nan, 5],
                   'datetime':pd.to_datetime(['20170403', '20170404', '20170405'])})
df.set_index('datetime', inplace=True)
df.rolling('2d', 1).apply(np.nanmin)

Problem description

the above generates

              a
datetime       
2017-04-03  1.0
2017-04-04  NaN
2017-04-05  5.0

when use datetimeIndex, if a row has NaN value it is not fed to input of apply when creating output for that row. To illustrate this, I use:

def foo(x):
    print(x)
    return np.nanmin(x)
print(df.rolling('2d', 1).apply(foo))

and got printed value:

[ 1.]
[ nan   5.]

the second row is skipped. This issue doesn't not exist when integer index is used:

df = pd.DataFrame({'a': [1, np.nan, 5]})
def foo(x):
    print(x)
    return np.nanmin(x)
print(df.rolling(2, 1).apply(foo))

print the following:

[ 1.]
[  1.  nan]
[ nan   5.]

and yields correct results

Expected Output

              a
datetime       
2017-04-03  1.0
2017-04-04  1.0
2017-04-05  5.0

Output of pd.show_versions()

INSTALLED VERSIONS ------------------ commit: None python: 3.5.2.final.0 python-bits: 64 OS: Darwin OS-release: 15.6.0 machine: x86_64 processor: i386 byteorder: little LC_ALL: None LANG: None LOCALE: en_US.UTF-8 pandas: 0.20.3 pytest: 2.8.5 pip: 8.1.2 setuptools: 25.1.6 Cython: 0.23.4 numpy: 1.13.1 scipy: 0.17.0 xarray: None IPython: 5.1.0 sphinx: 1.4.1 patsy: 0.4.0 dateutil: 2.6.1 pytz: 2017.2 blosc: None bottleneck: 1.0.0 tables: 3.2.2 numexpr: 2.4.6 feather: None matplotlib: 1.5.1 openpyxl: 2.3.2 xlrd: 0.9.4 xlwt: 1.0.0 xlsxwriter: 0.8.4 lxml: 3.5.0 bs4: 4.4.1 html5lib: None sqlalchemy: 1.0.11 pymysql: None psycopg2: None jinja2: 2.8 s3fs: None pandas_gbq: None pandas_datareader: None

Comment From: gfyoung

@staftermath : That does look a little strange. Investigation and PR to patch are welcome!

Comment From: jreback

duplicate of this: https://github.com/pandas-dev/pandas/issues/15305

fixes are welcome.