Code Sample, a copy-pastable example if possible

#Does not work, raises: "TypeError: 'DataFrame' objects are mutable, thus they cannot be hashed "
df.query(' ITEM in @label.keys() and "H2O" in @label[ITEM]')

#Does not work, raises: " PandasExprVisitor' object has no attribute 'visit_ListComp' "
db.query(' ITEMID in [k for k,v in label.items() if "H2O" in v]')

# Works
df[df['item'].isin([k for k,v in label.items() if 'H2O' in v])]

# df header:

   SUBJECT_ID  ITEM
0           1     3
1           2     5
2           1     5
3           1     2
4           1     2

label:
{
 1: 'Coffee',
 2: 'Apple Juice',
 3: 'Soda',
 4: 'Tea',
 5: 'Sparkling H2O'
}

Problem description

As the code shows, I have a dataframe with item numbers whose labels are saved in another dictionary to save memory. I am trying to get all the rows that contain items who have a certain substring in their labels. Currently using query() to accomplish this will raise one of the two errors shown in the code.

Expected Output

   SUBJECT_ID  ITEM
1           2     5
2           1     5

Output of pd.show_versions()

[paste the output of ``pd.show_versions()`` here below this line] INSTALLED VERSIONS ------------------ commit: None python: 3.5.3.final.0 python-bits: 64 OS: Windows OS-release: 10 machine: AMD64 processor: Intel64 Family 6 Model 69 Stepping 1, GenuineIntel byteorder: little LC_ALL: None LANG: None LOCALE: None.None pandas: 0.20.1 pytest: 3.0.7 pip: 9.0.1 setuptools: 27.2.0 Cython: 0.25.2 numpy: 1.12.1 scipy: 0.19.0 xarray: None IPython: 5.3.0 sphinx: 1.5.6 patsy: 0.4.1 dateutil: 2.6.0 pytz: 2017.2 blosc: None bottleneck: 1.2.1 tables: 3.2.2 numexpr: 2.6.2 feather: None matplotlib: 2.0.2 openpyxl: 2.4.7 xlrd: 1.0.0 xlwt: 1.2.0 xlsxwriter: 0.9.6 lxml: 3.7.3 bs4: 4.6.0 html5lib: 0.9999999 sqlalchemy: 1.1.9 pymysql: None psycopg2: None jinja2: 2.9.6 s3fs: None pandas_gbq: None pandas_datareader: None

Comment From: chris-b1

Referencing a column inside a bracketed expression isn't currently supported, I suppose it could be, or at minimum some better error reporting.

Probably more idiomatic to write your filter like this:

df[df['ITEM'].map(label).str.contains('H2O')]

Comment From: jreback

you can already do limited selection via:

df.query('foo in["A', "B", "C"]') IOW a list of values is supported.

We are unlikely to expand the surface area of support for .query.