Code Sample, a copy-pastable example if possible

import pandas as pd
import numpy as np

fill_value = 0 
#fill_value = np.nan

df0 = pd.DataFrame({'A': [1, fill_value, fill_value]})
df1 = pd.DataFrame({'B': ['a','b','c']})

c = pd.concat([df0, df1], axis=1)
print(c) # >>> OK
print(c['A']) # >>> OK
print(c['B']) # >>> OK

#========================
print("=====================")
df0_s = df0.to_sparse(fill_value = fill_value)
c = pd.concat([df0_s, df1], axis=1)
print(c) # >>> OK
print(c['A']) # >>> OK
print(c['B']) # >>> ERROR: 'IntBlock' object has no attribute 'sp_index'

Problem description

The above code fails, when using mixed type data on segmenting the frame. A possible work-around is to recast the resulting sparse dataframe to a dense data frame via c_new = pd.DataFrame(c)

At the bootom of this it seems that pandas.concat always uses the highest class object in the to catenate list, e.g. here the SparseDataFrame, to store teh resulting values in. This effectively works deep, below, however, the on surface interfaces are kind of blown out if the data contained is not as expected. This might be a very similar issue as #18551 (https://github.com/pandas-dev/pandas/issues/18551)

Expected Output

well, hard to say if SparseDataFrames are to handle mixed type data (possibly keeping some of the columns sparse, other dense), or if pd.concat should fall back to a dense DataFrame here. Anyhow, the issue should be fixed one way or another,

Output of pd.show_versions()

INSTALLED VERSIONS ------------------ commit: None python: 3.6.1.final.0 python-bits: 64 OS: Windows OS-release: 10 machine: AMD64 processor: Intel64 Family 6 Model 94 Stepping 3, GenuineIntel byteorder: little LC_ALL: None LANG: None LOCALE: None.None pandas: 0.21.0 pytest: 3.0.7 pip: 9.0.1 setuptools: 27.2.0 Cython: 0.25.2 numpy: 1.13.3 scipy: 0.19.1 pyarrow: None xarray: None IPython: 5.3.0 sphinx: 1.5.6 patsy: 0.4.1 dateutil: 2.6.0 pytz: 2017.2 blosc: None bottleneck: 1.2.1 tables: 3.2.2 numexpr: 2.6.2 feather: None matplotlib: 2.0.2 openpyxl: 2.4.7 xlrd: 1.0.0 xlwt: 1.2.0 xlsxwriter: 0.9.6 lxml: 3.7.3 bs4: 4.6.0 html5lib: 0.999 sqlalchemy: 1.1.9 pymysql: None psycopg2: None jinja2: 2.9.6 s3fs: None fastparquet: None pandas_gbq: None pandas_datareader: None

Comment From: jreback

a duplicate of #16874

yep, sparse could use some love!