Code Sample, a copy-pastable example if possible

import pandas as pd

dates = pd.date_range('2017-01-01', '2017-01-31', tz='UTC')
deltas = pd.TimedeltaIndex(pd.np.arange(0, len(dates)), unit='m')
dates + deltas

# Removing the tz='UTC' (making dates tz naive) works

throws:

TypeError                                 Traceback (most recent call last)
<ipython-input-28-708df3869f57> in <module>()
      3 dates = pd.date_range('2017-01-01', '2017-01-31', tz='UTC')
      4 deltas = pd.TimedeltaIndex(pd.np.arange(0, len(dates)), unit='m')
----> 5 dates + deltas

~/miniconda/lib/python3.6/site-packages/pandas/core/indexes/datetimelike.py in __add__(self, other)
    643             from pandas.tseries.offsets import DateOffset
    644             if isinstance(other, TimedeltaIndex):
--> 645                 return self._add_delta(other)
    646             elif isinstance(self, TimedeltaIndex) and isinstance(other, Index):
    647                 if hasattr(other, '_add_delta'):

~/miniconda/lib/python3.6/site-packages/pandas/core/indexes/datetimes.py in _add_delta(self, delta)
    814             new_values = self._add_delta_td(delta)
    815         elif isinstance(delta, TimedeltaIndex):
--> 816             new_values = self._add_delta_tdi(delta)
    817             # update name when delta is Index
    818             name = com._maybe_match_name(self, delta)

~/miniconda/lib/python3.6/site-packages/pandas/core/indexes/datetimelike.py in _add_delta_tdi(self, other)
    727             mask = (self._isnan) | (other._isnan)
    728             new_values[mask] = iNaT
--> 729         return new_values.view(self.dtype)
    730 
    731     def isin(self, values):

TypeError: data type not understood

Problem description

Adding TimedeltaIndex to timezone-aware DatetimeIndex throws a TypeError. The error goes away if the DatetimeIndex does not have a timezone.

(I vaguely remember seeing an issue on this, but can't seem to find it now when I search.)

Output of pd.show_versions()

INSTALLED VERSIONS ------------------ commit: None python: 3.6.2.final.0 python-bits: 64 OS: Linux OS-release: 4.10.0-33-generic machine: x86_64 processor: x86_64 byteorder: little LC_ALL: C.UTF-8 LANG: C.UTF-8 LOCALE: en_US.UTF-8 pandas: 0.21.0 pytest: None pip: 9.0.1 setuptools: 36.5.0.post20170921 Cython: None numpy: 1.13.3 scipy: 0.19.1 pyarrow: None xarray: None IPython: 6.2.1 sphinx: None patsy: None dateutil: 2.6.1 pytz: 2017.3 blosc: None bottleneck: None tables: 3.4.2 numexpr: 2.6.4 feather: None matplotlib: 2.1.0 openpyxl: None xlrd: 1.0.0 xlwt: None xlsxwriter: None lxml: None bs4: 4.6.0 html5lib: 0.9999999 sqlalchemy: None pymysql: None psycopg2: None jinja2: 2.10 s3fs: None fastparquet: None pandas_gbq: None pandas_datareader: None

Comment From: jschendel

This should be fixed on master via #18653

In [1]: import pandas as pd
   ...:
   ...: dates = pd.date_range('2017-01-01', '2017-01-31', tz='UTC')
   ...: deltas = pd.TimedeltaIndex(pd.np.arange(0, len(dates)), unit='m')
   ...: dates + deltas
   ...:
Out[1]:
DatetimeIndex(['2017-01-01 00:00:00+00:00', '2017-01-02 00:01:00+00:00',
               '2017-01-03 00:02:00+00:00', '2017-01-04 00:03:00+00:00',
               '2017-01-05 00:04:00+00:00', '2017-01-06 00:05:00+00:00',
               '2017-01-07 00:06:00+00:00', '2017-01-08 00:07:00+00:00',
               '2017-01-09 00:08:00+00:00', '2017-01-10 00:09:00+00:00',
               '2017-01-11 00:10:00+00:00', '2017-01-12 00:11:00+00:00',
               '2017-01-13 00:12:00+00:00', '2017-01-14 00:13:00+00:00',
               '2017-01-15 00:14:00+00:00', '2017-01-16 00:15:00+00:00',
               '2017-01-17 00:16:00+00:00', '2017-01-18 00:17:00+00:00',
               '2017-01-19 00:18:00+00:00', '2017-01-20 00:19:00+00:00',
               '2017-01-21 00:20:00+00:00', '2017-01-22 00:21:00+00:00',
               '2017-01-23 00:22:00+00:00', '2017-01-24 00:23:00+00:00',
               '2017-01-25 00:24:00+00:00', '2017-01-26 00:25:00+00:00',
               '2017-01-27 00:26:00+00:00', '2017-01-28 00:27:00+00:00',
               '2017-01-29 00:28:00+00:00', '2017-01-30 00:29:00+00:00',
               '2017-01-31 00:30:00+00:00'],
              dtype='datetime64[ns, UTC]', freq='1441T')

In [2]: pd.__version__
Out[2]: '0.22.0.dev0+427.gee9c7e9'

Comment From: jreback

yep

closing as duplicate of https://github.com/pandas-dev/pandas/issues/17558