Code Sample, a copy-pastable example if possible

        # create grouped Pandas DataFrame
        gpdf = pdf.groupby('bins', as_index=False)
        # create difference table statistics from gpdf in a new DataFrame
        diffs_without_sums = stat_dataframe(gpdf)
        # calculate sums row
        row = get_sums(diffs_without_sums)[diffs_without_sums.columns]
        row['mean'] = 0
        if row['count'] > 0:
            row['mean'] = row['tot_change'] / row['count']
        row['perc_cut'] = sums_perc_cut
        row['perc_inc'] = sums_perc_inc
        row['share_of_change'] = 1.0  # avoid rounding error
        diffs = diffs_without_sums.append(row)
        # append top-decile-detail rows
        if groupby == 'weighted_deciles':
            pdf = gpdf.get_group(10)  # top decile as its own DataFrame
            pdf = add_quantile_bins(copy.deepcopy(pdf), income_measure, 10)
            # TODO: following statement generates this IGNORED error:
            # ValueError: Buffer dtype mismatch,
            #             expected 'Python object' but got 'long'
            # Exception ValueError: "Buffer dtype mismatch,
            #              expected 'Python object' but got 'long'"
            #              in 'pandas._libs.lib.is_bool_array' ignored
            #                                                  ^^^^^^^
            # It is hoped that Pandas PR#17841, which is scheduled for <================
            # inclusion in Pandas version 0.22.0 (Jan 2018), will fix this. <===========
            pdf['bins'].replace(to_replace=[1, 2, 3, 4, 5],
                                value=[0, 0, 0, 0, 0], inplace=True)
            pdf['bins'].replace(to_replace=[6, 7, 8, 9],
                                value=[1, 1, 1, 1], inplace=True)
            pdf['bins'].replace(to_replace=[10], value=[2], inplace=True)
            gpdf = pdf.groupby('bins', as_index=False)
            sdf = stat_dataframe(gpdf)
            diffs = diffs.append(sdf, ignore_index=True)
        return diffs

Problem description

Get ignored error message described in code fragment above, which is causing Tax-Calculator users confusion (see, for example, Tax-Calculator issue 1799). If there is an error, why does Pandas ignore it? If there is not an error, why does Pandas print an error message and then ignore it? Based on the conversation in #18252, we had expected this error message to go away after we upgraded to 0.22.0, but that doesn't seem to be the case.

Expected Output

I would expect a non-ignored error message that stops program execution if I am using pandas incorrectly.
Or I would expect no error message if I am using pandas correctly. But I get neither.

Output of pd.show_versions()

iMac2:tax-calculator mrh$ python Python 2.7.14 |Anaconda custom (64-bit)| (default, Oct 5 2017, 02:28:52) [GCC 4.2.1 Compatible Clang 4.0.1 (tags/RELEASE_401/final)] on darwin Type "help", "copyright", "credits" or "license" for more information. >>> import pandas as pd >>> pd.show_versions()

INSTALLED VERSIONS

commit: None python: 2.7.14.final.0 python-bits: 64 OS: Darwin OS-release: 16.7.0 machine: x86_64 processor: i386 byteorder: little LC_ALL: None LANG: en_US.UTF-8 LOCALE: None.None

pandas: 0.22.0 pytest: 3.2.1 pip: 9.0.1 setuptools: 36.5.0.post20170921 Cython: 0.26.1 numpy: 1.13.3 scipy: 0.19.1 pyarrow: None xarray: None IPython: 5.4.1 sphinx: 1.6.3 patsy: 0.4.1 dateutil: 2.6.1 pytz: 2017.2 blosc: None bottleneck: 1.2.1 tables: 3.4.2 numexpr: 2.6.2 feather: None matplotlib: 2.1.0 openpyxl: 2.4.8 xlrd: 1.1.0 xlwt: 1.2.0 xlsxwriter: 1.0.2 lxml: 4.1.0 bs4: 4.6.0 html5lib: 0.999999999 sqlalchemy: 1.1.13 pymysql: None psycopg2: None jinja2: 2.9.6 s3fs: None fastparquet: None pandas_gbq: None pandas_datareader: None >>>

Comment From: jreback

this is pushed in 0.23.0. (was called 0.22.0 at some point, but we released a single change in 0.22.0).

Comment From: martinholmer

@jreback, Thanks for the quick update on pandas release plans.