Code Sample, a copy-pastable example if possible

import pandas as pd
x = np.int64(4)
print("input isinstance np.int64    ",isinstance(x, np.int64))
print( "input type:", type(x))
df = pd.DataFrame.from_dict({0: {'int64':x}}, orient='index')

print('output')
print("dataframe isinstance np.int64",isinstance(df.iloc[0], np.int64))   # does not evaluate to true
print('dataframe dtype:',df['int64'].dtype)
print("dataframe type", type(df['int64'].iloc[0]))

print("dataframe.values dtype", isinstance(df.values[0][0], np.int64))

Problem description

A np.int64 instance that is extracted from a dataframe is not an np.int64 instance even though pandas dtype says it is and the underlying value is.

Expected Output

input isinstance np.int64     True
input type: <class 'numpy.int64'>
output
dataframe isinstance np.int64 False
dataframe dtype: int64
dataframe type <class 'numpy.int64'>
dataframe.values dtype True

Output of pd.show_versions()

INSTALLED VERSIONS ------------------ commit: None python: 3.6.3.final.0 python-bits: 64 OS: Linux OS-release: 4.4.0-53-generic machine: x86_64 processor: x86_64 byteorder: little LC_ALL: None LANG: en_US.UTF-8 LOCALE: en_US.UTF-8 pandas: 0.22.0 pytest: 3.2.1 pip: 9.0.1 setuptools: 36.5.0.post20170921 Cython: 0.26.1 numpy: 1.13.1 scipy: 0.19.1 pyarrow: 0.8.0 xarray: 0.9.6 IPython: 6.1.0 sphinx: 1.6.3 patsy: 0.4.1 dateutil: 2.6.1 pytz: 2017.2 blosc: None bottleneck: 1.2.1 tables: 3.4.2 numexpr: 2.6.2 feather: None matplotlib: 2.0.2 openpyxl: 2.4.8 xlrd: 1.1.0 xlwt: 1.3.0 xlsxwriter: 0.9.8 lxml: 3.8.0 bs4: 4.6.0 html5lib: 0.999999999 sqlalchemy: 1.1.13 pymysql: None psycopg2: None jinja2: 2.9.6 s3fs: None fastparquet: None pandas_gbq: None pandas_datareader: 0.5.0

Comment From: jreback

this is by-definition and correct. extraction or iteration of a scalar will always be a python type