Pandas version checks

  • [X] I have checked that this issue has not already been reported.

  • [X] I have confirmed this bug exists on the latest version of pandas.

  • [ ] I have confirmed this bug exists on the main branch of pandas.

Reproducible Example

import pandas as pd

pd.options.mode.copy_on_write = True
# pd.options.mode.copy_on_write = "warn"
dftest = pd.DataFrame({"A":[1,4,1,5], "B":[2,5,2,6], "C":[3,6,1,7]})
df=dftest[["B","C"]]
df.iloc[[1,3],:] = [[2, 2],[2 ,2]]

Issue Description

The result is the following error output:

Traceback (most recent call last): File "/home/rolf/jupyter/venv/lib/python3.12/site-packages/pandas/core/internals/blocks.py", line 1429, in setitem values[indexer] = casted ~~~~~~^^^^^^^^^ ValueError: shape mismatch: value array of shape (2,2) could not be broadcast to indexing result of shape (2,)

The above exception was the direct cause of the following exception:

Traceback (most recent call last): File "/home/rolf/code/python/bug.py", line 7, in df.iloc[[1,3],:] = [[2, 2],[2 ,2]] ~~~~~~~^^^^^^^^^ File "/home/rolf/jupyter/venv/lib/python3.12/site-packages/pandas/core/indexing.py", line 911, in setitem iloc._setitem_with_indexer(indexer, value, self.name) File "/home/rolf/jupyter/venv/lib/python3.12/site-packages/pandas/core/indexing.py", line 1944, in _setitem_with_indexer self._setitem_single_block(indexer, value, name) File "/home/rolf/jupyter/venv/lib/python3.12/site-packages/pandas/core/indexing.py", line 2218, in _setitem_single_block self.obj._mgr = self.obj._mgr.setitem(indexer=indexer, value=value) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/rolf/jupyter/venv/lib/python3.12/site-packages/pandas/core/internals/managers.py", line 409, in setitem self.blocks[0].setitem((indexer[0], np.arange(len(blk_loc))), value) File "/home/rolf/jupyter/venv/lib/python3.12/site-packages/pandas/core/internals/blocks.py", line 1432, in setitem raise ValueError( ValueError: setting an array element with a sequence.

Expected Behavior

Should not give an error. When uncommenting the copy_on_write="warn" line the code runs with no error message as expected (I'd expect a warning in this case, but thats a separate issue)

Installed Versions

INSTALLED VERSIONS ------------------ commit : 0691c5cf90477d3503834d983f69350f250a6ff7 python : 3.12.3 python-bits : 64 OS : Linux OS-release : 6.8.0-47-generic Version : #47-Ubuntu SMP PREEMPT_DYNAMIC Fri Sep 27 21:40:26 UTC 2024 machine : x86_64 processor : x86_64 byteorder : little LC_ALL : None LANG : de_DE.UTF-8 LOCALE : de_DE.UTF-8 pandas : 2.2.3 numpy : 2.0.2 pytz : 2024.2 dateutil : 2.9.0.post0 pip : 24.0 Cython : None sphinx : None IPython : 8.27.0 adbc-driver-postgresql: None adbc-driver-sqlite : None bs4 : 4.12.3 blosc : None bottleneck : None dataframe-api-compat : None fastparquet : None fsspec : None html5lib : None hypothesis : None gcsfs : None jinja2 : 3.1.4 lxml.etree : None matplotlib : 3.9.2 numba : None numexpr : None odfpy : None openpyxl : None pandas_gbq : None psycopg2 : None pymysql : None pyarrow : None pyreadstat : None pytest : None python-calamine : None pyxlsb : None s3fs : None scipy : 1.14.1 sqlalchemy : 2.0.36 tables : None tabulate : None xarray : None xlrd : None xlsxwriter : None zstandard : None tzdata : 2024.2 qtpy : None pyqt5 : None

Comment From: sooooooing

take

Comment From: jorisvandenbossche

@kameamea thanks a lot for testing the CoW mode and for the report! I can confirm that I see the same for 2.2 (it works fine without enabling CoW, but gives that error when enabled), and it also appears on the main development branch for 3.0. So something we should definitely fix.

Comment From: jorisvandenbossche

FWIW I think is related to https://github.com/pandas-dev/pandas/pull/51435#discussion_r1245201566, i.e. the fact that we pass integer indices instead of a slice(None) (:) to the underlying method, which ends up using this for indexing the numpy array, which fails in this case.

Comment From: bobcorthals

FYI. Remarkably, the reported error is raised only on the first call. Demonstration of this behavior (pandas 2.2.3):

import pandas as pd
# 2.2.3

pd.options.mode.copy_on_write = True
dftest = pd.DataFrame({"A":[1,4,1,5], "B":[2,5,2,6], "C":[3,6,1,7]})
df=dftest[["B","C"]]
try:
    print('try: I failed\n')
    df.iloc[[1,3],:] = [[2, 2],[2 ,2]]
except:
    df.iloc[[1,3],:] = [[2, 2],[2 ,2]]
    print('except: I worked\n')

print(df)

Prints:

try: I failed

except: I worked

   B  C
0  2  3
1  2  2
2  2  1
3  2  2

Comment From: jorisvandenbossche

@bobcorthals I think the reason for that is because the initial dataframes starts under the hood with the three columns stored in a single "block" (a single 2d numpy array). Then in the first assignment (which fails) it splits the block, and then the second time you try the assignment, because the block is already split at that point, it takes a different code path that does not have the bug.

Comment From: chilin0525

Hi @jorisvandenbossche and @bobcorthals, I retested on the main branch and got the same error message output when executing with and without the pd.options.mode.copy_on_write = True setting. It seems like we should pass the slice(None) parameter for BlockManager?

https://github.com/pandas-dev/pandas/blob/6bcd30397d67c3887288c7a82c2c235ce8bc3c7f/pandas/core/internals/managers.py#L575

The following is some testing result in main branch codebase: * Without pd.options.mode.copy_on_write = True ```python import pandas as pd

# pd.options.mode.copy_on_write = True dftest = pd.DataFrame({"A":[1,4,1,5], "B":[2,5,2,6], "C":[3,6,1,7]}) df = dftest[["B","C"]]

df.iloc[[1,3], :] = [[2, 2],[2 ,2]] print(dftest) print(df) * output: Traceback (most recent call last): File "/home/pandas/pandas/core/internals/blocks.py", line 1135, in setitem values[indexer] = casted ValueError: shape mismatch: value array of shape (2,2) could not be broadcast to indexing result of shape (2,)

The above exception was the direct cause of the following exception:

Traceback (most recent call last):
  File "/home/pandas/test.py", line 9, in <module>
    df.iloc[[1,3], :] = [[2, 2],[2 ,2]]
  File "/home/pandas/pandas/core/indexing.py", line 920, in __setitem__
    iloc._setitem_with_indexer(indexer, value, self.name)
  File "/home/pandas/pandas/core/indexing.py", line 1940, in _setitem_with_indexer
    self._setitem_single_block(indexer, value, name)
  File "/home/pandas/pandas/core/indexing.py", line 2204, in _setitem_single_block
    self.obj._mgr = self.obj._mgr.setitem(indexer=indexer, value=value)
  File "/home/pandas/pandas/core/internals/managers.py", line 578, in setitem
    self.blocks[0].setitem((indexer[0], np.arange(len(blk_loc))), value)
  File "/home/pandas/pandas/core/internals/blocks.py", line 1138, in setitem
    raise ValueError(
ValueError: setting an array element with a sequence.
```
  • With pd.options.mode.copy_on_write = True ```python import pandas as pd

pd.options.mode.copy_on_write = True dftest = pd.DataFrame({"A":[1,4,1,5], "B":[2,5,2,6], "C":[3,6,1,7]}) df = dftest[["B","C"]]

df.iloc[[1,3], :] = [[2, 2],[2 ,2]] print(dftest) print(df) * output: Traceback (most recent call last): File "/home/pandas/pandas/core/internals/blocks.py", line 1135, in setitem values[indexer] = casted ValueError: shape mismatch: value array of shape (2,2) could not be broadcast to indexing result of shape (2,)

The above exception was the direct cause of the following exception:

Traceback (most recent call last):
  File "/home/pandas/test.py", line 9, in <module>
    df.iloc[[1,3], :] = [[2, 2],[2 ,2]]
  File "/home/pandas/pandas/core/indexing.py", line 920, in __setitem__
    iloc._setitem_with_indexer(indexer, value, self.name)
  File "/home/pandas/pandas/core/indexing.py", line 1940, in _setitem_with_indexer
    self._setitem_single_block(indexer, value, name)
  File "/home/pandas/pandas/core/indexing.py", line 2204, in _setitem_single_block
    self.obj._mgr = self.obj._mgr.setitem(indexer=indexer, value=value)
  File "/home/pandas/pandas/core/internals/managers.py", line 578, in setitem
    self.blocks[0].setitem((indexer[0], np.arange(len(blk_loc))), value)
  File "/home/pandas/pandas/core/internals/blocks.py", line 1138, in setitem
    raise ValueError(
ValueError: setting an array element with a sequence.
```

Comment From: chilin0525

take