Pandas version checks

  • [x] I have checked that this issue has not already been reported.

  • [x] I have confirmed this bug exists on the latest version of pandas.

  • [x] I have confirmed this bug exists on the main branch of pandas.

Reproducible Example

import pandas

test_series = pandas.Series(['asdf', 'as'], dtype='string[pyarrow]')
regex = r'((as)|(as))'
regex2 = r'(as)|(as)'

test_series.str.fullmatch(regex)
# False
# True
test_series.str.fullmatch(regex2)
# True
# True

test_series2 = pandas.Series(['asdf', 'as'], dtype=str)

test_series2.str.fullmatch(regex)
# False
# True
test_series2.str.fullmatch(regex2)
# False
# True

Issue Description

As the example shows you can use the same regular expression for the str.fullmatch method when using a str dtype and string[pyarrow] dtype and get different results. This seems to stem from Apache Arrow not having a dedicated fullmatch or match, so the regular expression has to be edited with "^" and "$" characters before being delivered to its search function. There might also be some special handling in Python's fullmatch method with the "|" operator. Long story short, at least some regular expressions delivered to PyArrow need additional surrounding parentheses to get the same fullmatch results as when using Python's fullmatch.

I have submitted #61073 to try and address this.

Expected Behavior

The second set of fullmatch results in the example shows the expected behavior. The str.fullmatch method should behave the same for either dtype.

Installed Versions

INSTALLED VERSIONS ------------------ commit : 0691c5cf90477d3503834d983f69350f250a6ff7 python : 3.10.5 python-bits : 64 OS : Windows OS-release : 10 Version : 10.0.19045 machine : AMD64 processor : Intel64 Family 6 Model 158 Stepping 12, GenuineIntel byteorder : little LC_ALL : None LANG : en LOCALE : English_United States.1252 pandas : 2.2.3 numpy : 1.24.4 pytz : 2022.1 dateutil : 2.8.2 pip : 25.0.1 Cython : 3.0.11 sphinx : 5.1.1 IPython : 8.21.0 adbc-driver-postgresql: None adbc-driver-sqlite : None bs4 : None blosc : None bottleneck : None dataframe-api-compat : None fastparquet : None fsspec : None html5lib : 1.1 hypothesis : None gcsfs : None jinja2 : None lxml.etree : 4.9.1 matplotlib : None numba : None numexpr : None odfpy : None openpyxl : 3.1.4 pandas_gbq : None psycopg2 : None pymysql : None pyarrow : 19.0.1 pyreadstat : None pytest : None python-calamine : None pyxlsb : None s3fs : None scipy : None sqlalchemy : 2.0.9 tables : None tabulate : 0.9.0 xarray : None xlrd : None xlsxwriter : 3.2.0 zstandard : None tzdata : 2024.1 qtpy : 2.4.1 pyqt5 : None

Comment From: Pedro-Santos04

take

Comment From: ak47me

take