Pandas version checks

  • [x] I have checked that this issue has not already been reported.

  • [x] I have confirmed this bug exists on the latest version of pandas.

  • [ ] I have confirmed this bug exists on the main branch of pandas.

Reproducible Example

>>> import pandas as pd
>>> i = pd.date_range('2020-02-01', freq='QS-MAY', periods=3)
>>> i
DatetimeIndex(['2020-02-01', '2020-05-01', '2020-08-01'], dtype='datetime64[ns]', freq='QS-MAY')
>>> pd.DatetimeIndex(i, freq='QS-FEB')
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "C:\Program Files\Python312\Lib\site-packages\pandas\core\indexes\datetimes.py", line 370, in __new__
    dtarr = DatetimeArray._from_sequence_not_strict(
            ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "C:\Program Files\Python312\Lib\site-packages\pandas\core\arrays\datetimes.py", line 394, in _from_sequence_not_strict
    result._maybe_pin_freq(freq, validate_kwds)
  File "C:\Program Files\Python312\Lib\site-packages\pandas\core\arrays\datetimelike.py", line 2094, in _maybe_pin_freq
    _validate_inferred_freq(freq, self._freq)
  File "C:\Program Files\Python312\Lib\site-packages\pandas\core\arrays\datetimelike.py", line 2526, in _validate_inferred_freq
    raise ValueError(
ValueError: Inferred frequency <QuarterBegin: startingMonth=5> from passed values does not conform to passed frequency QS-FEB

Issue Description

pd.DatetimeIndex(...), when passed both an index with a frequency, AND a frequency, throws an error if the frequencies are unequal - even if they are equivalent.

Expected Behavior

If the frequencies are unequal, but equivalent (like in the example), an index with the specified (new) frequency should be returned.

That the frequencies are equivalent can be seen in the following snippet: simply direct setting the frequency of i to the specified frequency DOES work:

>>> i = pd.date_range('2020-02-01', freq='QS-MAY', periods=3)
>>> i.freq = 'QS-FEB'
>>> i
DatetimeIndex(['2020-02-01', '2020-05-01', '2020-08-01'], dtype='datetime64[ns]', freq='QS-FEB')

I think this only occurs for quarter-frequency, where "equivalent" means that the starting month mod 3 is equal.

Current workaround:

We don't want to change i, so the current workaround to i2 = pd.DatetimeIndex(i, freq='QS-FEB') is

i2 = i.copy()
i2.freq = 'QS-FEB'

...which is cumbersome, because it requires 2 steps and cannot be used in list comprehensions etc.

Alternatively, there is the elegant

i2 = pd.DatetimeIndex(i, freq=None).to_frame().asfreq(i.freq).index

Installed Versions

INSTALLED VERSIONS ------------------ commit : 0691c5cf90477d3503834d983f69350f250a6ff7 python : 3.12.2 python-bits : 64 OS : Windows OS-release : 10 Version : 10.0.19045 machine : AMD64 processor : Intel64 Family 6 Model 140 Stepping 1, GenuineIntel byteorder : little LC_ALL : None LANG : en_US.UTF-8 LOCALE : English_United States.1252 pandas : 2.2.3 numpy : 2.1.1 pytz : 2024.2 dateutil : 2.9.0.post0 pip : 24.2 Cython : None sphinx : None IPython : None adbc-driver-postgresql: None adbc-driver-sqlite : None bs4 : None blosc : None bottleneck : None dataframe-api-compat : None fastparquet : None fsspec : None html5lib : None hypothesis : None gcsfs : None jinja2 : None lxml.etree : None matplotlib : None numba : None numexpr : None odfpy : None openpyxl : None pandas_gbq : None psycopg2 : None pymysql : None pyarrow : None pyreadstat : None pytest : None python-calamine : None pyxlsb : None s3fs : None scipy : None sqlalchemy : None tables : None tabulate : None xarray : None xlrd : None xlsxwriter : None zstandard : None tzdata : 2024.2 qtpy : None pyqt5 : None

Comment From: rhshadrach

Thanks for the report. When setting the attribute, pandas generates the NumPy array with the new frequency and confirms that it matches the data underlying the DatetimeIndex. I'd be supportive of doing the same in DatetimeIndex.__init__.

~I think we should also just be comparing frequency strings for those that do not have equivalents, and possibly fast-pathing other cases (i.e. not generating an entire new NumPy array). But that can be for another issue.~

Edit: Any frequency can be equivalent to some other, I think.

Comment From: rwijtvliet

Thanks for the quick triage!

Another welcome addition would be a method like DatetimeIndex.set_freq(), returning a copy of the index but with the specified frequency.

Analogous methods exist for changing other properties of (a copy of) the index - to such as DatetimeIndex.rename() (for the index name), .tz_localize() and .tz_convert() (for the timezone).

If that exists, I'd prefer it over using DatetimeIndex.__init__, as it is more specific and signals intent.

Comment From: ycdjun

Take

Comment From: rhshadrach

Another welcome addition would be a method like DatetimeIndex.set_freq(), returning a copy of the index but with the specified frequency.

I think this should be separated off into its own issue. Can you open a new one with this enhancement request.

Comment From: rwijtvliet

Another welcome addition would be a method like DatetimeIndex.set_freq(), returning a copy of the index but with the specified frequency.

I think this should be separated off into its own issue. Can you open a new one with this enhancement request.

Yes, I agree. See here.