Pandas version checks

  • [x] I have checked that this issue has not already been reported.

  • [ ] I have confirmed this bug exists on the latest version of pandas.

  • [x] I have confirmed this bug exists on the main branch of pandas.

Reproducible Example

import numpy as np
import pandas as pd

s = pd.Series([1.0, np.nan, 3.0], index=[1, 3, 4])
s.interpolate(method='linear')
s.interpolate(method='index')

Issue Description

The interpolation method 'linear' behaves like the method 'index' with current Pandas 3.0.0 nightly. This is a regression from 2.2.3.

According to the documentation (stable and dev):

Interpolation technique to use. One of:

  • ‘linear’: Ignore the index and treat the values as equally spaced. This is the only method supported on MultiIndexes. [...]
  • ‘index’: The interpolation uses the numerical values of the DataFrame’s index to linearly calculate missing values.

In the example above, the index is not linearly spaced. But both interpolation methods return the output that is expected for the 'index' method when using the latest Pandas 3.0.0 nightly.

>>> s.interpolate(method='linear')
1    1.000000
3    2.333333
4    3.000000
dtype: float64
>>> s.interpolate(method='index')
1    1.000000
3    2.333333
4    3.000000
dtype: float64

Expected Behavior

The output should be different and 'linear' should ignore the non-linearly spaced index. The expected output should be the same as with Pandas 2.2.3:

>>> s.interpolate(method='linear')
1    1.0
3    2.0
4    3.0
dtype: float64
>>> s.interpolate(method='index')
1    1.000000
3    2.333333
4    3.000000
dtype: float64

Installed Versions

INSTALLED VERSIONS ------------------ commit : ddd0aa8dc73481017330892dfd0ea95c0dfaa1d3 python : 3.12.1 python-bits : 64 OS : Windows OS-release : 10 Version : 10.0.19044 machine : AMD64 processor : AMD64 Family 23 Model 113 Stepping 0, AuthenticAMD byteorder : little LC_ALL : None LANG : None LOCALE : English_United Kingdom.1252 pandas : 3.0.0.dev0+2010.gddd0aa8dc7 numpy : 2.3.0.dev0+git20250311.a651643 dateutil : 2.9.0.post0 pip : 23.2.1 Cython : None sphinx : None IPython : None adbc-driver-postgresql: None adbc-driver-sqlite : None bs4 : None blosc : None bottleneck : None fastparquet : None fsspec : None html5lib : None hypothesis : None gcsfs : None jinja2 : None lxml.etree : None matplotlib : None numba : None numexpr : None odfpy : None openpyxl : None psycopg2 : None pymysql : None pyarrow : None pyreadstat : None pytest : None python-calamine : None pytz : None pyxlsb : None s3fs : None scipy : None sqlalchemy : None tables : None tabulate : None xarray : None xlrd : None xlsxwriter : None zstandard : None tzdata : 2025.1 qtpy : None pyqt5 : None